A broadband 23.1 ∼ 27.2 GHz doherty power amplifier with peak output power of 24.3 dBm

Circuit World ◽  
2019 ◽  
Vol 46 (1) ◽  
pp. 1-5
Author(s):  
Yanfeng Fang ◽  
Yijiang Zhang

Purpose This paper aims to implement a new high output power fully integrated 23.1 to 27.2 GHz gallium arsenide heterojunction bipolar transistor power amplifier (PA) to meet the stringent linearity requirements of LTE systems. Design/methodology/approach The direct input power dividing technique is used on the chip. Broadband input and output matching techniques are used for broadband Doherty operation. Findings The PA achieves a small-signal gain of 22.8 dB at 25.1 GHz and a saturated output power of 24.3 dBm at 25.1 GHz with a maximum power added efficiency of 31.7%. The PA occupies 1.56 mm2 (including pads) and consumes a maximum current of 79.91 mA from a 9 V supply. Originality/value In this paper, the author proposed a novel direct input dividing technique with broadband matching circuits using a low Q output matching technique, and demonstrated a fully-integrated Doherty PA across frequencies of 23.1∼27.2 GHz for long term evolution-license auxiliary access (LTE-LAA) handset applications.

Circuit World ◽  
2020 ◽  
Vol 46 (4) ◽  
pp. 243-248
Author(s):  
Min Liu ◽  
Panpan Xu ◽  
Jincan Zhang ◽  
Bo Liu ◽  
Liwen Zhang

Purpose Power amplifiers (PAs) play an important role in wireless communications because they dominate system performance. High-linearity broadband PAs are of great value for potential use in multi-band system implementation. The purpose of this paper is to present a cascode power amplifier architecture to achieve high power and high efficiency requirements for 4.2∼5.4 GHz applications. Design/methodology/approach A common emitter (CE) configuration with a stacked common base configuration of heterojunction bipolar transistor (HBT) is used to achieve high power. T-type matching network is used as input matching network. To increase the bandwidth, the output matching networks are implemented using the two L-networks. Findings By using the proposed method, the stacked PA demonstrates a maximum saturated output power of 26.2 dBm, a compact chip size of 1.17 × 0.59 mm2 and a maximum power-added efficiency of 46.3 per cent. The PA shows a wideband small signal gain with less than 3 dB variation over working frequency. The saturated output power of the proposed PA is higher than 25 dBm between 4.2 and 5.4 GHz. Originality/value The technology adopted for the design of the 4.2-to-5.4 GHz stacked PA is the 2-µm gallium arsenide HBT process. Based on the proposed method, a better power performance of 3 dB improvement can be achieved as compared with the conventional CE or common-source amplifier because of high output stacking impedance.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Premmilaah Gunasegaran ◽  
Jagadheswaran Rajendran ◽  
Selvakumar Mariappan ◽  
Yusman Mohd Yusof ◽  
Zulfiqar Ali Abdul Aziz ◽  
...  

Purpose The purpose of this paper is to introduce a new linearization technique known as the passive linearizer technique which does not affect the power added efficiency (PAE) while maintaining a power gain of more than 20 dB for complementary metal oxide semiconductor (CMOS) power amplifier (PA). Design/methodology/approach The linearization mechanism is executed with an aid of a passive linearizer implemented at the gate of the main amplifier to minimize the effect of Cgs capacitance through the generation of opposite phase response at the main amplifier. The inductor-less output matching network presents an almost lossless output matching network which contributes to high gain, PAE and output power. The linearity performance is improved without the penalty of power consumption, power gain and stability. Findings With this topology, the PA delivers more than 20 dB gain for the Bluetooth Low Energy (BLE) Band from 2.4 GHz to 2.5 GHz with a supply headroom of 1.8 V. At the center frequency of 2.45 GHz, the PA exhibits a gain of 23.3 dB with corresponding peak PAE of 40.11% at a maximum output power of 14.3 dBm. At a maximum linear output power of 12.7 dBm, a PAE of 37.3% has been achieved with a peak third order intermodulation product of 28.04 dBm with a power consumption of 50.58 mW. This corresponds to ACLR of – 20 dBc, thus qualifying the PA to operate for BLE operation. Practical implications The proposed technique is able to boost up the efficiency and output power, as well as linearize the PA closer to 1 dB compression point. This reduces the trade-off between linear output power and PAE in CMOS PA design. Originality/value The proposed CMOS PA can be integrated comfortably to a BLE transmitter, allowing it to reduce the transceiver’s overall power consumption.


2012 ◽  
Vol 4 (6) ◽  
pp. 559-567 ◽  
Author(s):  
Ahmed Sayed ◽  
Sebastian Preis ◽  
Georg Boeck

In this paper, a 10 W ultra-broadband GaN power amplifier (PA) is designed, fabricated, and tested. The suggested design technique provides a more accurate starting point for matching network synthesis and better prediction of achievable circuit performance. A negative-image model was used to fit the extracted optimum impedances based on source-/load-pull technique and multi-section impedance matching networks were designed. The implemented amplifier presents an excellent broadband performance, resulting in a gain of 8.5 ± 0.5 dB, saturated output power of ≥10 W, and power added efficiency (PAE) of ≥23% over the whole bandwidth. The linearity performance has also been characterized. An output third-order intercept point (OIP3) of ≥45 dBm was extracted based on a two-tone measurement technique in the operating bandwidth with different frequency spacing values. The memory effect based on AM/AM and AM/PM conversions was also characterized using a modulated WiMAX signal of 10 MHz bandwidth at 5.8 GHz. Furthermore, a broadband Wilkinson combiner was designed for the same bandwidth with very low loss to extend the overall output power. Excellent agreement between simulated and measured PA performances was also achieved.


2014 ◽  
Vol 23 (08) ◽  
pp. 1450111 ◽  
Author(s):  
U. ESWARAN ◽  
H. RAMIAH ◽  
J. KANESAN ◽  
A. W. REZA

In this paper, a 1 mm × 1 mm fully integrated wideband dual-stage power amplifier (PA) for long-term evolution (LTE) band 1 (1920–1980 MHz) is presented. Fabricated in a 2 μm InGaP/GaAs hetero-junction bipolar transistor (HBT) process, the operating gain is observed to be 31.3 dB. The PA meets the minimum adjacent channel leakage ratio (ACLR) requirement of -30 dBc for LTE with 20 MHz wide channel bandwidth up to an output power of 30 dBm with the aid of a novel dual stage linearizer. Biased at low quiescent current of less than 100 mA with a headroom consumption of 3.5 V, the power added efficiency (PAE) is observed to be 38.29% at 30 dBm. With this high linear output power, the stringent requirement of antenna path loss is nullified. PA serves to be the first reported work to achieve 30 dBm linear output power at supply voltage of 3.5 V.


2011 ◽  
Vol 3 (2) ◽  
pp. 99-105 ◽  
Author(s):  
Dixian Zhao ◽  
Ying He ◽  
Lianming Li ◽  
Dieter Joos ◽  
Wim Philibert ◽  
...  

A 52–61 GHz power amplifier (PA) is implemented in 65 nm bulk complementary metal oxide semiconductor (CMOS) technology. The proposed PA employs a transformer-based power combiner to sum the output power from two unit PAs. Each unit PA uses transformer-coupled two-stage differential cascode topology. The differential cascode PA is able to increase the output power and ensure stability. The transformer-based passives enable a compact layout with the PA core area of only 0.3 mm2. The PA achieves a peak power gain of 10.2 dB with 3-dB bandwidth of 9 GHz. The measured saturated output power is 14.8 dBm with a peak power-added efficiency (PAE) of 7.2%. The reverse isolation is smaller than −33 dB from 25 to 65 GHz. The PA consumes a quiescent current of 143 mA from a 1.6 V supply.


2021 ◽  
Vol 5 (2) ◽  
pp. 5-10
Author(s):  
He Peng ◽  
Yuqing Dou

This paper proposes that a radio frequency power amplifier is suitable for a 5G millimeter wave. It adopts a three-stage single-ended structure at 28GHz. An analog predistortion linearization method is used to improve the linearity of the power amplifier (PA). As a result, there is a significant improvement in power-added efficiency (PAE) and linearity is achieved. The Ka-band PA is implemented in TSMC 65nm CMOS process. At 1.2V supply voltage, the PA proposed in this paper achieves a saturated output power of 15.9dBm and a PAE of 16%. After linearization, the output power at the 1dB compression point is increased by 2dBm, with efficient gain compensation performance.


2013 ◽  
Vol 31 (1) ◽  
pp. 1-7
Author(s):  
Harikrishnan Ramiah ◽  
U. Eswaran ◽  
J. Kanesan

Purpose – The purpose of this paper is to design and realize a high gain power amplifier (PA) with low output back-off power using the InGaP/GaAs HBT process for WCDMA applications from 1.85 to 1.91 GHz. Design/methodology/approach – A three stages cascaded PA is designed which observes a high power gain. A 100 mA of quiescent current helps the PA to operate efficiently. The final stage device dimension has been selected diligently in order to deliver a high output power. The inter-stage match between the driver and main stage has been designed to provide maximum power transfer. The output matching network is constructed to deliver a high linear output power which meets the WCDMA adjacent channel leakage ratio (ACLR) requirement of −33 dBc close to the 1 dB gain compression point. Findings – With the cascaded topology, a maximum 31.3 dB of gain is achieved at 1.9 GHz. S11 of less than −18 dB is achieved across the operating frequency band. The maximum output power is indicated to be 32.7 dBm. An ACLR of −33 dBc is achieved at maximum linear output power of 31 dBm. Practical implications – The designed PA is an excellent candidate to be employed in the WCDMA transmitter chain without the aid of additional driver amplifier and linearization circuits. Originality/value – In this work, a fully integrated GaAs HBT PA has been implemented which is capable to operate linearly close to its 1 dB gain compression point.


Circuit World ◽  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Selvakumar Mariappan ◽  
Jagadheswaran Rajendran ◽  
Norlaili Mohd Noh ◽  
Yusman Yusof ◽  
Narendra Kumar

Purpose The purpose of this paper is to implement a highly linear 180 nm complementary metal oxide semiconductor (CMOS) power amplifier (PA) to meet the stringent linearity requirement of an long term evolution (LTE) signal with minimum trade-off to power added efficiency (PAE). Design/methodology/approach The CMOS PA is designed in a cascaded dual-stage configuration comprises a driver amplifier and a main PA. The gate voltage (VGS) of the driver amplifier is tuned to optimize its positive third-order transconductance (gm3) to be canceled with the main PA’s fixed negative gm3. The gm3 cancellation between these stages mitigates the third-order intermodulation product (IMD3) that contributes to enhanced linearity. Findings For driver’s VGS of 0.82 V with continuous wave signal, the proposed PA achieved a power gain of 14.5 dB with a peak PAE of 31.8% and a saturated output power of 23.3 dBm at 2.45 GHz. A maximum third-order output intercept point of 34 dBm is achieved at 20.2 dBm output power with a corresponding IMD3 of −33.4 dBc. When tested with a 20 MHz LTE signal, the PA delivers 19 dBm maximum linear output power for an adjacent channel leakage ratio specification of −30 dBc. Originality/value In this study, a novel cascaded gm3 cancellation technique has been implemented to achieve a maximum linear output power under modulated signals.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Changhyun Lee ◽  
Changkun Park

We propose a mode-locking method optimized for the cascode structure of an RF CMOS power amplifier. To maximize the advantage of the typical mode-locking method in the cascode structure, the input of the cross-coupled transistor is modified from that of a typical mode-locking structure. To prove the feasibility of the proposed structure, we designed a 2.4 GHz CMOS power amplifier with a 0.18 μm RFCMOS process for polar transmitter applications. The measured power added efficiency is 34.9%, while the saturated output power is 23.32 dBm. The designed chip size is1.4×0.6 mm2.


Sign in / Sign up

Export Citation Format

Share Document