scholarly journals Usulan Perbaikan Peracangan Produk Smart Light Menggunakan Metode Design for Assembly Boothroyd-Dewhurst

2018 ◽  
Vol 1 (3) ◽  
Author(s):  
Arief Irfan Syah Tjaja ◽  
Rochmat Puji Astomo ◽  
Rispianda

ABSTRACTSmart Lamp product is a street lighting product which developed by PT X with LED lights concept. The design of Smart Light product is found to be slightly violate the terms of good design to the assembly process proposed by Boothroyd-Dewhurst as there is a component with sharp side, too much for using fastener, difficult fastener installation because the component is blocked and so forth. Existing design efficiency of Smart Light product is based on a calculation using the Boothroyd-Dewhurst table is 7.63% with total assembly time for 1149.1 seconds while the proposed design efficiency is 15.52% with total assembly time is 539.84 seconds. The changes of the design result reduction of the estimated product cost from Rp1.831.721, - and the BEP in 1482 products on existing product to Rp1.732.609, - and the BEP in 1283 products on proposed product.Kata kunci: design efficiency, assembly time, estimated cost, break event point (BEP).ABSTRAKProduk Smart Light adalah merupakan sebuah produk lampu penerangan jalan yang dikembangkan oleh PT X dengan konsep lampu LED. Rancangan produk Smart Light ini ternyata tidak sedikit melanggar ketentuan-ketentuan perancangan yang baik untuk proses perakitan yang dikemukakan oleh Boothroyd-Dewhurst seperti terdapat komponen yang memiliki bagian yang tajam, penggunaan fastener yang terlalu banyak, pemasangan fastener yang sulit karena komponen terhalang dan sebagainya. Efisiensi desain existing produk Smart Light ini berdasarkan pada perhitungan menggunakan tabel Boothroyd-Dewhurst adalah 7,63% dengan waktu perakitan total selama 1149,1 detik sedangkan efisiensi desain usulan adalah 15,52% dengan waktu perakitan total selama 539,84 detik. Perubahan rancangan desain mengakibatkan pengurangan pada estimasi biaya produk dari Rp1.831.721,- dan break event point (BEP) pada produk ke 1482 untuk produk existing menjadi Rp1.732.609,- dan BEP pada produk ke 1283 untuk produk usulan..Keywords: efisiensi desain, waktu perakitan, estimasi biaya, break event point

Author(s):  
Rahul Renu ◽  
Matthew Peterson ◽  
Gregory Mocko ◽  
Joshua Summers

Assembly process sheets are formal documents used extensively within automotive original equipment manufacturers (OEMs) to document and communicate assembly procedure, required tooling, contingency plans, and time study results. These sheets are authored throughout the vehicle life-cycle. Further, various customers use these sheets for training, analyzing the process, and line-balancing. In this research, the primary focus is the time studies analysis that is completed using knowledge contained within the assembly process sheets. In this research, a method and software tool are developed to utilize coupling between part descriptions and process descriptions for assembly time studies. The method is realized through the development of a standardized vocabulary for describing work instructions, a mapping from work instructions to MTM codes, and a tool for extracting relevant part information from CAD models. The approach enables process planners to establish part-process coupling, author work instructions using the controlled vocabulary, to estimate assembly time. A prototype system is developed and tested using examples from an automotive OEM.


Author(s):  
Robert H. Sturges ◽  
Jui-Te Yang

Abstract In support of the effort to bring downstream issues to the attention of the designer as parts take shape, an analysis system is being built to extract certain features relevant to the assembly process, such as the dimension, shape, and symmetry of an object. These features can be applied to a model during the downstream process to evaluate handling and assemblability. In this paper, we will focus on the acquisition phase of the assembly process and employ a Design for Assembly (DFA) evaluation to quantify factors in this process. The capabilities of a non-homogeneous, non-manifold boundary representation geometric modeling system are used with an Index of Difficulty (ID) that represents the dexterity and time required to assemble a product. A series of algorithms based on the high-level abstractions of loop and link are developed to extract features that are difficult to orient, which is one of the DFA criteria. Examples for testing the robustness of the algorithms are given. Problems related to nearly symmetric outlines are also discussed.


2014 ◽  
Vol 11 (sup1) ◽  
pp. S54-S60
Author(s):  
Neeraj Panhalkar ◽  
Ratnadeep Paul ◽  
Sam Anand

Author(s):  
Andika Febrianto ◽  
Wahri Sunanda ◽  
Rika Favoria Gusa

This research was conducted to design public street lighting photovoltaic, based on SNI 7391:2008 concerning specifications of public street lighting in urban areas with several parameters that were considered by poles, lights used, intensity of light needed, number of lights needed and supporting equipment for public street lighting photovoltaic. Currently, Jenderal Sudirman road in the city of Pangkalpinang along 1.5 km uses electricity from PLN with 30 units of 150 watt SON lamps and 11 lux light intensity. The design obtained for street lighting photovoltaic while still meet SNI for light intensity, obtained supporting equipment for solar street lighting, namely 31 unit of 8 meter octagonal poles with specifications of 40 watt LED lights for each cross arm, 1 unit of 100 Wp solar panels, unit of 100 Ah VRLA batteries and 1 unit of solar charger controller (10A, 12V / 24V).


2013 ◽  
Vol 745-746 ◽  
pp. 430-435 ◽  
Author(s):  
Shao Hua Zhen ◽  
Li Bao An ◽  
Yan Yan Liu

Study of the effect of dielectrophoresis (DEP) parameters is important in high-precision DEP assembly of carbon nanotubes (CNTs). The DEP parameters usually considered in the literature include the magnitude and frequency of the applied voltage, the assembly time, the concentration of the CNT suspension, and the geometry of the electrodes. This paper reviews the current progresses on both numerical and experimental study of the CNT assembly by DEP, especially the influence of the DEP parameters on the assembly process and results. The review shows that the magnitude of the applied voltage affects the DEP force and the number of deposited CNTs. The assembly time and CNT concentration influence the density of deposited CNTs. Different electrode geometries have an effect on the distribution of the electric field. The electrode spacing changes the field strength and the direction of the field gradient. The related discussion is presented as well.


Author(s):  
Eric Owensby ◽  
Aravind Shanthakumar ◽  
Vikrant Rayate ◽  
Essam Namouz ◽  
Joshua D. Summers

This paper presents a comparison study on two design for assembly (DFA) tools, Boothroyd and Dewhurst’s Design for Manufacturing and Assembly software and the Mathieson-Summers connective-complexity algorithm, focusing on the amount of information required from the designer to complete the analysis and the subjectivity of this information. The Boothroyd Dewhurst software requires the user to answer a set of questions about each part and how it is assembled to estimate an assembly time, assembly cost, and to suggest design improvements. The connective-complexity method predicts assembly times based on the physical connectivity between parts within an assembly. The methods are applied to three consumer products and evaluated and compared through five criteria: approximate time to conduct the analysis, predicted assembly time, amount of required input information, amount of subjective information, and number of redesign features provided to the user. The results show that the DFMA software requires the user to go through eight types of information answering a total of forty nine questions per part. Sixteen of these questions are based on subjective information making the analysis nearly a third subjective. The connectivity method requires only two types of information and a total of five questions per part to complete the analysis, none of it being subjective. The predicted assembly times from the connective-complexity DFA method ranged from 13.11% to 49.71% lower than the times predicted by the DFMA software. The results from this comparison can be used to bench mark DFA methods so that their weaknesses can be identified and improved.


Author(s):  
T. L. DeFazio ◽  
A. C. Edsall ◽  
R. E. Gustavson ◽  
J. A. Hernandez ◽  
P. M. Hutchins ◽  
...  

Abstract This paper describes a prototype software system that implements a form of feature-based design for assembly. It is not an automated design system but instead a decision and design aid for designers interested in Concurrent Design. Feature-based design captures design intent (assembly topology, product function, manufacturing, or field use) while creating part and product geometry. Design for assembly as used here extends existing ideas about critiquing part shapes and part count to include assembly process planning, assembly sequence generation, assembly fixturing assessments, and assembly process costs. This work was primarily Interested in identifying the information important to DFA tasks, and how that information could be captured using feature-based design. It was not intended to extend the state of the art in feature-based geometry creation, but rather to explore the uses of the information that can be captured. The prototype system has been programmed in LISP on Sun workstations. Its research contributions comprise integration of feature-based design with several existing and new assembly analysis and synthesis algorithms; construction of feature properties to meet the needs of those algorithms; a carefully chosen division of labor between designer and computer; and illustration of feature-based models of products as the information source for assembly analysis and process design. Some of its functions have been implemented approximately or partially but they give the flavor of the benefits to be expected from a fully functional system.


2019 ◽  
Vol 22 (3) ◽  
pp. 615-632 ◽  
Author(s):  
Davy D. Parmentier ◽  
Bram B. Van Acker ◽  
Jan Detand ◽  
Jelle Saldien

Author(s):  
David E. Lee ◽  
H. Thomas Hahn

Abstract The development approach embodied in design for assembly (DFA) has been demonstrated effectively in different industrial sectors and through the design of a multitude of products. However, little effort has been applied to improving development methods for the assembly operations and processes used to fabricate these products. If the benefits of concurrent engineering are to be fully realized, a more holistic approach to unifying a product’s design with development of its assembly processes is needed. This paper provides a description of our approach to establishing an environment for coordinated product and assembly process development. The steps in a product’s development cycle are introduced and the concepts of design for assembly and concurrent engineering defined. Using DFA methods as a motivation, an approach to assembly process development is derived. Referred to as Systematic Assembly Process Development (S-APD), assembly processes are defined and analyzed by using standardized generic assembly operations. To address problems created by using concurrent engineering in product/process development, two mechanisms are described. Since the focus of developing a product (i.e. how well does it perform and cost) differs from developing its assembly processes (i.e. making products at the necessary volumes), the concept of an interface reference context is introduced as a coordination mechanism and applied to development of unmanned composite low-cost aircraft. Moreover, in identifying which elements of the design are to be assembled with a specific set of production technologies, a synchronous thread is instantiated to link product and assembly process development efforts in a temporal context. Different approaches are reviewed to resolve potential conflicts related to concurrency effects generated during simultaneous product and assembly process development.


Sign in / Sign up

Export Citation Format

Share Document