scholarly journals THERMAL AWARE LINK ENERGY EFFICIENT SCHEME FOR BODY AREA NETWORKS

Author(s):  
M. Javed

A daunting task in Wireless Body Area Networks (WBANs) is still to develop Effective routing techniques. Small-sized nodes are installed on or within the human body to monitor human health conditions which then deliver the data to servers for analysis. During sensing and data transfer, biomedical sensors work continuously and the temperature of the nodes may rise beyond the threshold limit. This temperature rise may damage the human body tissues as well as the routing mechanism in terms of path losses. To keep the temperature at its normal working value, a priority-based selection of routes is required to prevent data loss during transmission. This will ensure safe and accurate data delivery at the destination. A protocol called “Thermal Aware Link Energy Efficient Scheme for WBANs” (TALEEBA) for workers is proposed to monitor the health of workers in factories. One of the four sinks will collect the data of the nearest worker in the field. As the body temperature of any worker is detected to rise, an alarm will be generated and the supervisor of the workplace will ask the worker to be replaced by some other worker. The same mechanism will continue till the task ends. Our proposed TALEEBA (Thermal Aware Link Energy Efficient Scheme for WBANs) scheme is aligned with current LAEEBA and THE-FAME WBAN schemes. In simulations, we analyze our protocol in terms of stability period, network lifetime, residual energy, a packet sent, packet dropped, and throughput. Hence, the results show stability and network life 50%, a packet sent 20% and throughput 23% are improved in comparison with LABEEA and THE-FAME protocols.

Author(s):  
Ramanpreet Kaur ◽  
Ruchi Pasricha ◽  
Bikrampal Kaur

Background: The increased cost of treatments in the health care industry and advancements in technologies have led to a promising area of development in Wireless Sensor Networks and semiconductor technologies. Wireless Body Area Networks is a subset of WSN in which sensor nodes are placed on the human body or implanted inside the body to determine various physical parameters of the human body. This information is forwarded to the medical centers or central servers through gateways. The direct advantage of this technology is the existence of portable health monitoring applications as well as location independent monitoring applications. But, still, the existence of smart hospitals needs a lot of focused research related to practical problems faced by patients as well as practitioners. Introduction: The aim of this paper is to present an essential depiction of WBAN development in both medical and non- medical applications. The important features of various wireless technologies supported by WBAN have also been presented. It is apparent that to determine the overall performance of a network in terms of different parameters like temperature, power consumption, throughput and delay, etc., a significant role is played by the routing protocols. Since WBAN directly deals with the human body and hence implementation of a new protocol is a challenging task before researchers, this paper reviews each category of routing protocols and their corresponding limitations. A comparison among routing protocols will guide researchers in implementing a specific protocol for targeted application. The paper also focuses on the future of WBAN which will provide the research areas for further exploration. Conclusion: It is found that QoS aware protocols are employed specifically for critical applications. If we consider radiation imparted from the sensors and tissue protection of the human body, the thermal aware routing protocol is the solution. Another important conclusion of this paper is that the various protocols do not provide an optimal solution for selecting the forward node during routing and this solution primarily depends on the residual energy of the nodes and distance of the node from the sink. A study of protocols developed from 2004 onwards till date shows that implementation of WBAN using integration of IoT, EoT, and fog computing has been the emerging topic of research in recent years.


Author(s):  
Achmad Mauludiyanto ◽  
Gamantyo Hendrantoro ◽  
Muhammad Fachry Nova

The Wireless Body Area Network (WBAN) refers to a communication network between sensors placed on the inside, on the surface, or around the body wirelessly. WBAN system cannot be separated from body tissues. Body tissues also have electrical properties depending on frequency. Therefore, body tissue can affect the phenomena occurring in radio wave propagation in the WBAN channel. One of the phenomena is attenuation. This study investigates the impacts of body tissue on the WBAN channel and the effects of frequency on the attenuation of body tissue in the WBAN channel. The measurement of magnitude response was carried out with the human body as the measurement object by utilizing the S21 parameter measurement with a vector network analyzer. In NLOS conditions, a human body was located between two coplanar Vivaldi antenna. Measurements were conducted on the head, chest, and abdomen. The frequency used was in the range of 2 GHz to 6 GHz. The body tissue attenuation was obtained by finding the difference between the magnitude measurement response on the LOS and NLOS conditions. The attenuation data were analyzed using statistical and numerical analysis to determine the effect of frequency on the attenuation of the human body tissues. Based on the analysis results, it was identified that the frequency affected the human body tissue attenuation. The enhancement attenuation of the human body tissues occurred when the frequency was higher. Moreover, there was a significant difference in the body tissue attenuation in different parts of the body.Keywords: attenuation, body tissues, s-parameters, wireless body area network.


2020 ◽  
Author(s):  
Mayukh Nath ◽  
Alfred Krister Ulvog ◽  
Scott Weigand ◽  
Shreyas Sen

AbstractWith the advent of wearable technologies, Human Body Communication (HBC) has emerged as a physically secure and power-efficient alternative to the otherwise ubiquitous Wireless Body Area Network (WBAN). Whereas the most investigated nodes of HBC have been Electric and Electro-quasistatic (EQS) Capacitive and Galvanic, recently Magnetic HBC (M-HBC) has been proposed as a viable alternative. Previous works have investigated M-HBC through an application point of view, without developing a fundamental working principle for the same. In this paper, for the first time, a ground up analysis has been performed to study the possible effects and contributions of the human body channel in M-HBC over a broad frequency range (1kHz to 10 GHz), by detailed electromagnetic simulations and supporting experiments. The results show that while M-HBC can be successfully operated as a body area network, the human body itself plays a minimal or negligible role in it’s functionality. For frequencies less than ∼30 Hz, in the domain of operation of Magneto-quasistatic (MQS) HBC, the human body is transparent to the quasistatic magnetic field. Conversely for higher frequencies, the conductive nature of human tissues end up attenuating Magnetic HBC fields due to Eddy currents induced in body tissues, eliminating the possibility of the body to support efficient waveguide modes. With this better understanding at hand, different modes of operations of MQS HBC have been outlined for both high impedance capacitive and 50Ω termination cases, and their performances have been compared with EQS HBC for similar sized devices, over varying distance between TX and RX. The resulting report presents the first fundamental understanding towards M-HBC operation and its contrast with EQS HBC, aiding HBC device designers to make educated design decisions, depending on mode of applications.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mayukh Nath ◽  
Shovan Maity ◽  
Shitij Avlani ◽  
Scott Weigand ◽  
Shreyas Sen

AbstractRadiative communication using electromagnetic fields is the backbone of today’s wirelessly connected world, which implies that the physical signals are available for malicious interceptors to snoop within a 5–10 m distance, also increasing interference and reducing channel capacity. Recently, Electro-quasistatic Human Body Communication (EQS-HBC) was demonstrated which utilizes the human body’s conductive properties to communicate without radiating the signals outside the body. Previous experiments showed that an attack with an antenna was unsuccessful at a distance more than 1 cm from the body surface and 15 cm from an EQS-HBC device. However, since this is a new communication modality, it calls for an investigation of new attack modalities—that can potentially exploit the physics utilized in EQS-HBC to break the system. In this study, we present a novel attack method for EQS-HBC devices, using the body of the attacker itself as a coupling surface and capacitive inter-body coupling between the user and the attacker. We develop theoretical understanding backed by experimental results for inter-body coupling, as a function of distance between the subjects. We utilize this newly developed understanding to design EQS-HBC transmitters that minimizes the attack distance through inter-body coupling, as well as the interference among multiple EQS-HBC users due to inter-body coupling. This understanding will allow us to develop more secure and robust EQS-HBC based body area networks in the future.


Sign in / Sign up

Export Citation Format

Share Document