scholarly journals NATO and Arctic security: Challenges, Opportunities and Prospects

Author(s):  
V. I. Glotov ◽  
I. A. Arzhanov

In this article, the authors analyse the current policy of the North Atlantic Alliance (NATO) in the Arctic . The article emphasises that the new challenges in the Arctic, related to climate change, the participation of non-Arctic states in the development of the territory and the growth of Russia’s military activity, have put before NATO the question of forming a task and official strategy . So far, member states have not reached consensus in this direction . The article identifies the main steps of the Alliance, which confirm the thesis about the growth of tension in the Far North . We identified the factors that may affect the prospects of the Alliance in the region . Taking into account the fact that the Arctic in contemporary circumstances has entered the global agenda of international politics, the authors conclude the growth of NATO activity, as evidenced by the practical steps of the organisation . Little attention has been paid to this in official documents, although the importance of cooperation in the region has already been stressed .

2014 ◽  
Vol 6 (1) ◽  
pp. 598-628 ◽  
Author(s):  
Alyson JK Bailes

The Arctic region’s smallest states and home-rule entities are clustered around the North European/ North Atlantic gateway. Small states in general are considered to need external ‘shelter’ from other states or institutions when faced with multi-functional security challenges beyond their own capacities. Arctic opening as a result of climate change will – even without conflict or excessive militarization – force local small actors to review their ‘hard’ security policies; will offer economic opportunities but also temptations and risks; and will create or aggravate various functional security challenges that demand multilateral cooperation. Case-by-case discussion of the various (groups of) small Northern actors reveals that their Arctic agendas vary subtly, and their preferred ‘shelter’ solutions sometimes not so subtly. Up to now, Arctic considerations have highlighted rather than overcoming variations in states’ basic stances vis-a-vis the obvious protectors: the us, nato and eu. However all small players close to the region agree on the value of ‘softer’ neighbourhood organizations like the Arctic Council, and are working to strengthen their own (broadly defined) security cooperation. The extra issue of independence arises for the Faroes, Greenland and Scotland. Despite all such complications, the overall value of having peace-minded small states engaged in the Arctic game probably outweighs the practical drawbacks.


2021 ◽  
pp. 79-102
Author(s):  
Andrey V. ZAGORSKIY ◽  
◽  
Andrey A. TODOROV ◽  

The article describes the politico-military situation in the Arctic, including the development of military capabilities of states in the region, the coastal infrastructure, the scales and the manner of military exercises, as well as the dynamics of the military landscape in the Arctic. The authors argue that the mili-tary capabilities in most parts of the Arctic remain moderate, primarily due to harsh climate restraints. However, military activity both of NATO member-states and Russia has increased considerably recently in the Euro-Arctic area adjacent to the North Atlantic, in particular in the waters of the Barents and the Nor-wegian seas. Mutual military deterrence in this area represents a "new old" normal that will shape the security situation in the Arctic in the long term. The article concludes by considering possible options for preventing escalation and minimizing the concerns of the sides by restoring a full, regular and institutionalized military dialogue between Russia and the rest of the Arctic states.


2020 ◽  
Vol 11 (0) ◽  
pp. 360
Author(s):  
Njord Wegge

New uncertainties in international relations have presented several states in the West with important choices regarding their national strategies for the Arctic. This article analyzes security challenges in the Arctic and North Atlantic region, as understood by some key North-Atlantic states, namely: the USA, Canada, Denmark, Norway, the UK, Germany and France. By analyzing how, or to what degree, the colder east-west security landscape since 2014 is reflected in these selected North Atlantic states’ Arctic security strategies, this article seeks to improve our understanding of how the security situation in the northernmost part of the world is developing and being understood. Through applying a traditional understanding of security, the article identifies similarities but also significant differences among the Arctic and North-Atlantic states. Most notable when comparing the strategies is the rather unique global perspective laid out in the US security strategy for the region. The British, Norwegian, Danish and Canadian perspectives, on the other hand, stand out as more regional in nature. Germany displays a rather low profile in its approach to international security in the Arctic, considering its economic status in Europe. France reveals a strong concern for Arctic shipping and freedom of navigation, a perspective similar to the USA’s, but with less global ambition.


2018 ◽  
Vol 14 (11) ◽  
pp. 1639-1651 ◽  
Author(s):  
Gloria M. Martin-Garcia ◽  
Francisco J. Sierro ◽  
José A. Flores ◽  
Fátima Abrantes

Abstract. The southwestern Iberian margin is highly sensitive to changes in the distribution of North Atlantic currents and to the position of oceanic fronts. In this work, the evolution of oceanographic parameters from 812 to 530 ka (MIS20–MIS14) is studied based on the analysis of planktonic foraminifer assemblages from site IODP-U1385 (37∘34.285′ N, 10∘7.562′ W; 2585 m b.s.l.). By comparing the obtained results with published records from other North Atlantic sites between 41 and 55∘ N, basin-wide paleoceanographic conditions are reconstructed. Variations of assemblages dwelling in different water masses indicate a major change in the general North Atlantic circulation during MIS16, coinciding with the definite establishment of the 100 ky cyclicity associated with the mid-Pleistocene transition. At the surface, this change consisted in the redistribution of water masses, with the subsequent thermal variation, and occurred linked to the northwestward migration of the Arctic Front (AF), and the increase in the North Atlantic Deep Water (NADW) formation with respect to previous glacials. During glacials prior to MIS16, the NADW formation was very weak, which drastically slowed down the surface circulation; the AF was at a southerly position and the North Atlantic Current (NAC) diverted southeastwards, developing steep south–north, and east–west, thermal gradients and blocking the arrival of warm water, with associated moisture, to high latitudes. During MIS16, the increase in the meridional overturning circulation, in combination with the northwestward AF shift, allowed the arrival of the NAC to subpolar latitudes, multiplying the moisture availability for ice-sheet growth, which could have worked as a positive feedback to prolong the glacials towards 100 ky cycles.


2021 ◽  
pp. 1
Author(s):  
Xiaolin Liu ◽  
Jianhua Lu ◽  
Yimin Liu ◽  
Guoxiong Wu

AbstractWintertime precipitation is vital to the growth of glaciers in the northern hemisphere. We find a tripole mode of precipitation (PTM), with each pole of the mode extending zonally over the eastern hemisphere roughly between 30°W and 120°E, and the positive/negative/positive structure for its positive phase extending meridionally from the Arctic to the continental North Africa–Eurasia. The large-scale dynamics associated with the PTM is explored. The positive phase of the PTM is associated with the negative while eastward-shifted phase of the North Atlantic Oscillation (NAO) and a zonal band of positive SST anomaly in the tropics, together with a narrowed Hadley cell and weakened Ferrel cell. While being north-eastward tilted and separated from their North Africa-Eurasia counterpart in the climatological mean, the upper-tropospheric westerly jets over the east Pacific and north Atlantic become extending zonally and shifting southward and hence form a circumpolar subtropical jet as a whole by connecting with the westerly jets over the North Africa-Eurasia. The enhanced zonal winds over the north Atlantic promote more synoptic-scale transient eddies which are waveguided by the jet streams. The polar vortex weakens and cold air dips southward from the North Pole. Further diagnosis of the E-vectors suggests that transient eddies have a positive feedback on the weakening of Ferrel cell. Opposite features are associated with the negative phase of the PTM. The reconstructed time series using multiple linear regression on the NAO index and the tropical SST averaged over 20°S– 20°N, can explain 62.4% of the variance of the original the original precipitation time series.


2018 ◽  
Vol 93 (1) ◽  
pp. 121-128 ◽  
Author(s):  
James G Foggo ◽  
Alarik Fritz

2019 ◽  
Vol 76 (1) ◽  
pp. 333-356 ◽  
Author(s):  
A. Hannachi ◽  
W. Iqbal

Abstract Nonlinearity in the Northern Hemisphere’s wintertime atmospheric flow is investigated from both an intermediate-complexity model of the extratropics and reanalyses. A long simulation is obtained using a three-level quasigeostrophic model on the sphere. Kernel empirical orthogonal functions (EOFs), which help delineate complex structures, are used along with the local flow tendencies. Two fixed points are obtained, which are associated with strong bimodality in two-dimensional kernel principal component (PC) space, consistent with conceptual low-order dynamics. The regimes reflect zonal and blocked flows. The analysis is then extended to ERA-40 and JRA-55 using daily sea level pressure (SLP) and geopotential heights in the stratosphere (20 hPa) and troposphere (500 hPa). In the stratosphere, trimodality is obtained, representing disturbed, displaced, and undisturbed states of the winter polar vortex. In the troposphere, the probability density functions (PDFs), for both fields, within the two-dimensional (2D) kernel EOF space are strongly bimodal. The modes correspond broadly to opposite phases of the Arctic Oscillation with a signature of the negative North Atlantic Oscillation (NAO). Over the North Atlantic–European sector, a trimodal PDF is also obtained with two strong and one weak modes. The strong modes are associated, respectively, with the north (or +NAO) and south (or −NAO) positions of the eddy-driven jet stream. The third weak mode is interpreted as a transition path between the two positions. A climate change signal is also observed in the troposphere of the winter hemisphere, resulting in an increase (a decrease) in the frequency of the polar high (low), consistent with an increase of zonal flow frequency.


2015 ◽  
Vol 12 (6) ◽  
pp. 2591-2616
Author(s):  
I. Wróbel ◽  
J. Piskozub

Abstract. The ocean sink is an important part of the anthropogenic CO2 budget. Because the terrestrial biosphere is usually treated as a residual, understanding the uncertainties the net flux into the ocean sink is crucial for understanding the global carbon cycle. One of the sources of uncertainty is the parameterization of CO2 gas transfer velocity. We used a recently developed software tool, FluxEngine, to calculate monthly net carbon air–sea flux for the extratropical North Atlantic, European Arctic as well as global values (or comparison) using several available parameterizations of gas transfer velocity of different dependence of wind speed, both quadratic and cubic. The aim of the study is to constrain the uncertainty caused by the choice of parameterization in the North Atlantic, a large sink of CO2 and a region with good measurement coverage, characterized by strong winds. We show that this uncertainty is smaller in the North Atlantic and in the Arctic than globally, within 5 % in the North Atlantic and 4 % in the European Arctic, comparing to 9 % for the World Ocean when restricted to functions with quadratic wind dependence and respectively 42, 40 and 67 % for all studied parameterizations. We propose an explanation of this smaller uncertainty due to the combination of higher than global average wind speeds in the North Atlantic and lack of seasonal changes in the flux direction in most of the region. We also compare the available pCO2 climatologies (Takahashi and SOCAT) pCO2 discrepancy in annual flux values of 8 % in the North Atlantic and 19 % in the European Arctic. The seasonal flux changes in the Arctic have inverse seasonal change in both climatologies, caused most probably by insufficient data coverage, especially in winter.


2009 ◽  
Vol 6 (1) ◽  
pp. 971-994 ◽  
Author(s):  
E. H. Shadwick ◽  
T. Papakyriakou ◽  
A. E. F. Prowe ◽  
D. Leong ◽  
S. A. Moore ◽  
...  

Abstract. The Arctic Ocean is expected to be disproportionately sensitive to climatic changes, and is thought to be an area where such changes might be detected. The Arctic hydrological cycle is influenced by: runoff and precipitation, sea ice formation/melting, and the inflow of saline waters from Bering and Fram Straits and the Barents Sea Shelf. Pacific water is recognizable as intermediate salinity water, with high concentrations of dissolved inorganic carbon (DIC), flowing from the Arctic Ocean to the North Atlantic via the Canadian Arctic Archipelago. We present DIC data from an east-west section through the Archipelago, as part of the Canadian International Polar Year initiatives. The fractions of Pacific and Arctic Ocean waters leaving the Archipelago and entering Baffin Bay, and subsequently the North Atlantic, are computed. The eastward transport of carbon from the Pacific, via the Arctic, to the North Atlantic is estimated. Altered mixing ratios of Pacific and freshwater in the Arctic Ocean have been recorded in recent decades. Any climatically driven alterations in the composition of waters leaving the Arctic Archipelago may have implications for anthropogenic CO2 uptake, and hence ocean acidification, in the subpolar and temperate North Atlantic.


2012 ◽  
Vol 8 (3) ◽  
pp. 1885-1914
Author(s):  
D. Xiao ◽  
P. Zhao ◽  
Y. Wang ◽  
X. Zhou

Abstract. Using an intermediate-complexity UVic Earth System Climate Model (UVic Model), the geographical and seasonal implications and an indicative sense of the historical climate found in the δ18O record of the Guliya ice core (hereinafter, the Guliya δ18O) are investigated under time-dependent orbital forcing with an acceleration factor of 100 over the past 130 ka. The results reveal that the simulated late-summer (August–September) Guliya surface air temperature (SAT) reproduces the 23-ka precession and 43-ka obliquity cycles in the Guliya δ18O. Furthermore, the Guliya δ18O is significantly correlated with the SAT over the Northern Hemisphere (NH), which suggests the Guliya δ18O is an indicator of the late-summer SAT in the NH. Corresponding to the warm and cold phases of the precession cycle in the Guliya temperature, there are two anomalous patterns in the SAT and sea surface temperature (SST) fields. The first anomalous pattern shows an increase in the SAT (SST) toward the Arctic, possibly associated with the joint effect of the precession and obliquity cycles, and the second anomalous pattern shows an increase in the SAT (SST) toward the equator, possibly due to the influence of the precession cycle. Additionally, the summer (winter) Guliya and NH temperatures are higher (lower) in the warm phases of Guliya late-summer SAT than in the cold phases. Furthermore, the Guliya SAT is closely related to the North Atlantic SST, in which the Guliya precipitation may act as a "bridge" linking the Guliya SAT and the North Atlantic SST.


Sign in / Sign up

Export Citation Format

Share Document