scholarly journals A two-jet arc plasma: matrix effects and ways to their suppression

2019 ◽  
Vol 85 (1II)) ◽  
pp. 139-144
Author(s):  
N. P. Zaksas ◽  
A. F. Veryaskin

A two-jet plasma is used for direct atomic emission analysis of powdered samples. It is characterized by relatively weak matrix effects, which allows using unified calibration samples on the basis of graphite powder for analysis of the samples with inorganic, organic, and organomineral matrix. In the present paper the effects limiting the usage of the unified approach due to different thermal stability and evaporation efficiency of the samples are discussed. The understated concentrations of a set of elements (Al, Ba, Ca, La, Mg, Mn, Sr, Ti, and Y) were obtained in analysis of certified reference materials of geological samples. It was shown that determination of rare earth elements should be carried out in the region behind the jet confluence providing their complete evaporation. For other elements, registration of the spectra in this region improves the results to some extent but they do not achieve the certified values. To speed up evaporation of these elements, the experimental conditions were chosen for plasma chemical reactions which provide conversion of the matrix elements into more volatile compounds. Addition of ammonium hydrofluoride to powdered sample considerably increased the line intensities of Al and Ca strongly associated with the silicon matrix. Incomplete evaporation was observed in analysis of biological samples with particle size more than 100 μm. A decrease in consumption of carrier argon is quite enough for effective decomposition of the organic matrix in plasma; the value of gas consumption depends on thermal stability and particle size of the sample. Preliminary sample carbonization is another way to improve evaporation of biological samples.

Metabolites ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 434
Author(s):  
Asja Ćeranić ◽  
Christoph Bueschl ◽  
Maria Doppler ◽  
Alexandra Parich ◽  
Kangkang Xu ◽  
...  

Stable isotope-assisted approaches can improve untargeted liquid chromatography-high resolution mass spectrometry (LC-HRMS) metabolomics studies. Here, we demonstrate at the example of chemically stressed wheat that metabolome-wide internal standardization by globally 13C-labeled metabolite extract (GLMe-IS) of experimental-condition-matched biological samples can help to improve the detection of treatment-relevant metabolites and can aid in the post-acquisition assessment of putative matrix effects in samples obtained upon different treatments. For this, native extracts of toxin- and mock-treated (control) wheat ears were standardized by the addition of uniformly 13C-labeled wheat ear extracts that were cultivated under similar experimental conditions (toxin-treatment and control) and measured with LC-HRMS. The results show that 996 wheat-derived metabolites were detected with the non-condition-matched 13C-labeled metabolite extract, while another 68 were only covered by the experimental-condition-matched GLMe-IS. Additional testing is performed with the assumption that GLMe-IS enables compensation for matrix effects. Although on average no severe matrix differences between both experimental conditions were found, individual metabolites may be affected as is demonstrated by wrong decisions with respect to the classification of significantly altered metabolites. When GLMe-IS was applied to compensate for matrix effects, 272 metabolites showed significantly altered levels between treated and control samples, 42 of which would not have been classified as such without GLMe-IS.


2018 ◽  
Vol 84 (11) ◽  
pp. 9-14
Author(s):  
E. S. Koshel ◽  
V. B. Baranovskaya ◽  
M. S. Doronina

The analytical capabilities of arc atomic emission determination of As, Bi, Sb, Cu, Te in rare earth metals (REM) and their oxides after preparatory group concentration using S,N-containing heterochain polymer sorbent are studied on a high-resolution spectrometer “Grand- Extra” (“WMC-Optoelectron-ics” company, Russia). Sorption kinetics and dependence of the degree of the impurity extraction on the solution acidity are analyzed to specify conditions of sorption concentration. To optimize the procedure of arc atomic emission determination of As, Bi, Sb, Cu, and Te various schemes of their sorption preconcentration and subsequent processing of the resulted concentrate with the addition of a collector at different stages of the sorption process have been considered. Graphite powder is used as a collector in analysis of rare earth oxides due to universality and relative simplicity of the emission spectrum. Conditions of analysis and parameters of the spectrometer that affect the analytical signal (mass and composition of the sample, shape and size of the electrodes, current intensity and generator operation mode, interelectrode spacing, wavelengths of the analytical lines) are chosen. The evaporation curves of the determinable impurities were studied and the exposure time of As, Bi, Sb, Cu, and Te in the resulted sorption concentrate was determined. Correctness of the obtained results was evaluated using standard samples of the composition and in comparisons between methods. The results of the study are used to develop a method of arc chemical-atomic emission analysis of yttrium, gadolinium, neodymium, europium, scandium and their oxides in a concentration range of n x (10-2 - 10-5) wt.%.


1989 ◽  
Vol 54 (1) ◽  
pp. 91-101 ◽  
Author(s):  
Milan Stakić ◽  
Slobodan Milonjić ◽  
Vladeta Pavasović ◽  
Zoja Ilić

Ultrafiltration of three laboratory made silica and two commercial silica sols was studied using Amicon YC membrane in a 200 ml capacity batch-cell. The effect of silica particle size, stirring conditions, pressure, pH and silica contents on ultrafiltration was investigated. The results obtained indicate that the smaller particles have, disregarding the stirring conditions, lower filtration flux. The differences observed in filtration flux are more pronounced in the conditions without stirring. The obtained value of the membrane resistance is independent of the conditions investigated (stirring, pressure, pH, silica contents and particle size). The values of the resistance of polarized solids, specific resistance, and the mass of gel per membrane surface unit were calculated for all experimental conditions.


2021 ◽  
Vol 83 (8) ◽  
Author(s):  
Valeria Cigala ◽  
Ulrich Kueppers ◽  
Juan José Peña Fernández ◽  
Donald B. Dingwell

AbstractPredicting the onset, style and duration of explosive volcanic eruptions remains a great challenge. While the fundamental underlying processes are thought to be known, a clear correlation between eruptive features observable above Earth’s surface and conditions and properties in the immediate subsurface is far from complete. Furthermore, the highly dynamic nature and inaccessibility of explosive events means that progress in the field investigation of such events remains slow. Scaled experimental investigations represent an opportunity to study individual volcanic processes separately and, despite their highly dynamic nature, to quantify them systematically. Here, impulsively generated vertical gas-particle jets were generated using rapid decompression shock-tube experiments. The angular deviation from the vertical, defined as the “spreading angle”, has been quantified for gas and particles on both sides of the jets at different time steps using high-speed video analysis. The experimental variables investigated are 1) vent geometry, 2) tube length, 3) particle load, 4) particle size, and 5) temperature. Immediately prior to the first above-vent observations, gas expansion accommodates the initial gas overpressure. All experimental jets inevitably start with a particle-free gas phase (gas-only), which is typically clearly visible due to expansion-induced cooling and condensation. We record that the gas spreading angle is directly influenced by 1) vent geometry and 2) the duration of the initial gas-only phase. After some delay, whose length depends on the experimental conditions, the jet incorporates particles becoming a gas-particle jet. Below we quantify how our experimental conditions affect the temporal evolution of these two phases (gas-only and gas-particle) of each jet. As expected, the gas spreading angle is always at least as large as the particle spreading angle. The latter is positively correlated with particle load and negatively correlated with particle size. Such empirical experimentally derived relationships between the observable features of the gas-particle jets and known initial conditions can serve as input for the parameterisation of equivalent observations at active volcanoes, alleviating the circumstances where an a priori knowledge of magma textures and ascent rate, temperature and gas overpressure and/or the geometry of the shallow plumbing system is typically chronically lacking. The generation of experimental parameterisations raises the possibility that detailed field investigations on gas-particle jets at frequently erupting volcanoes might be used for elucidating subsurface parameters and their temporal variability, with all the implications that may have for better defining hazard assessment.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3101
Author(s):  
Mariana N. Oliveira ◽  
Oriana C. Gonçalves ◽  
Samir M. Ahmad ◽  
Jaderson K. Schneider ◽  
Laiza C. Krause ◽  
...  

This work entailed the development, optimization, validation, and application of a novel analytical approach, using the bar adsorptive microextraction technique (BAμE), for the determination of the six most common tricyclic antidepressants (TCAs; amitriptyline, mianserin, trimipramine, imipramine, mirtazapine and dosulepin) in urine matrices. To achieve this goal, we employed, for the first time, new generation microextraction devices coated with convenient sorbent phases, polymers and novel activated carbons prepared from biomaterial waste, in combination with large-volume-injection gas chromatography-mass spectrometry operating in selected-ion monitoring mode (LVI-GC-MS(SIM)). Preliminary assays on sorbent coatings, showed that the polymeric phases present a much more effective performance, as the tested biosorbents exhibited low efficiency for application in microextraction techniques. By using BAμE coated with C18 polymer, under optimized experimental conditions, the detection limits achieved for the six TCAs ranged from 0.2 to 1.6 μg L−1 and, weighted linear regressions resulted in remarkable linearity (r2 > 0.9960) between 10.0 and 1000.0 μg L−1. The developed analytical methodology (BAμE(C18)/LVI-GC-MS(SIM)) provided suitable matrix effects (90.2–112.9%, RSD ≤ 13.9%), high recovery yields (92.3–111.5%, RSD ≤ 12.3%) and a remarkable overall process efficiency (ranging from 84.9% to 124.3%, RSD ≤ 13.9%). The developed and validated methodology was successfully applied for screening the six TCAs in real urine matrices. The proposed analytical methodology proved to be an eco-user-friendly approach to monitor trace levels of TCAs in complex urine matrices and an outstanding analytical alternative in comparison with other microextraction-based techniques.


2014 ◽  
Vol 240 (4) ◽  
pp. 488-497 ◽  
Author(s):  
Nianbai Fang ◽  
Shanggong Yu ◽  
Martin JJ Ronis ◽  
Thomas M Badger

2016 ◽  
Vol 99 (5) ◽  
pp. 1163-1172 ◽  
Author(s):  
Pearse McCarron ◽  
Kelley L Reeves ◽  
Sabrina D Giddings ◽  
Daniel G Beach ◽  
Michael A Quilliam

Abstract Okadaic acid (OA) and its analogs, dinophysistoxins-1 (DTX1) and -2 (DTX2) are lipophilic biotoxins produced by marine algae that can accumulate in shellfish and cause the human illness known as diarrhetic shellfish poisoning (DSP). Regulatory testing of shellfish is required to protect consumers and the seafood industry. Certified reference materials (CRMs) are essential for the development, validation, and quality control of analytical methods, and thus play an important role in toxin monitoring. This paper summarizes work on research and development of shellfish tissue reference materials for OA and DTXs. Preliminary work established the appropriate conditions for production of shellfish tissue CRMs for OA and DTXs. Source materials, including naturally incurred shellfish tissue and cultured algae, were screened for their DSP toxins. This preliminary work informed planning and production of a wet mussel (Mytilus edulis) tissue homogenate matrix CRM. The homogeneity and stability of the CRM were evaluated and found to be fit-for-purpose. Extraction and LC-tandem MS methods were developed to accurately certify the concentrations of OA, DTX1, and DTX2 using a combination of standard addition and matrix-matched calibration to compensate for matrix effects in electrospray ionization. The concentration of domoic acid was also certified. Uncertainties were assigned following standards and guidelines from the International Organization for Standardization. The presence of other toxins in the CRM was also assessed and information values are reported for OA and DTX acyl esters.


2014 ◽  
Vol 70 (1) ◽  
pp. 136-143 ◽  
Author(s):  
K. Y. Lee ◽  
K. W. Kim ◽  
Y. J. Baek ◽  
D. Y. Chung ◽  
E. H. Lee ◽  
...  

The uranium(VI) adsorption efficiency of non-living biomass of brown algae was evaluated in various adsorption experimental conditions. Several different sizes of biomass were prepared using pretreatment and surface-modification steps. The kinetics of uranium uptake were mainly dependent on the particle size of the prepared Laminaria japonica biosorbent. The optimal particle size, contact time, and injection amount for the stable operation of the wastewater treatment process were determined. Spectroscopic analyses showed that uranium was adsorbed in the porous inside structure of the biosorbent. The ionic diffusivity in the biomass was the dominant rate-limiting factor; therefore, the adsorption rate was significantly increased with decrease of particle size. From the results of comparative experiments using the biosorbents and other chemical adsorbents/precipitants, such as activated carbons, zeolites, and limes, it was demonstrated that the brown algae biosorbent could replace the conventional chemicals for uranium removal. As a post-treatment for the final solid waste reduction, the ignition treatment could significantly reduce the weight of waste biosorbents. In conclusion, the brown algae biosorbent is shown to be a favorable adsorbent for uranium(VI) removal from radioactive wastewater.


Sign in / Sign up

Export Citation Format

Share Document