scholarly journals Linking gas and particle ejection dynamics to boundary conditions in scaled shock-tube experiments

2021 ◽  
Vol 83 (8) ◽  
Author(s):  
Valeria Cigala ◽  
Ulrich Kueppers ◽  
Juan José Peña Fernández ◽  
Donald B. Dingwell

AbstractPredicting the onset, style and duration of explosive volcanic eruptions remains a great challenge. While the fundamental underlying processes are thought to be known, a clear correlation between eruptive features observable above Earth’s surface and conditions and properties in the immediate subsurface is far from complete. Furthermore, the highly dynamic nature and inaccessibility of explosive events means that progress in the field investigation of such events remains slow. Scaled experimental investigations represent an opportunity to study individual volcanic processes separately and, despite their highly dynamic nature, to quantify them systematically. Here, impulsively generated vertical gas-particle jets were generated using rapid decompression shock-tube experiments. The angular deviation from the vertical, defined as the “spreading angle”, has been quantified for gas and particles on both sides of the jets at different time steps using high-speed video analysis. The experimental variables investigated are 1) vent geometry, 2) tube length, 3) particle load, 4) particle size, and 5) temperature. Immediately prior to the first above-vent observations, gas expansion accommodates the initial gas overpressure. All experimental jets inevitably start with a particle-free gas phase (gas-only), which is typically clearly visible due to expansion-induced cooling and condensation. We record that the gas spreading angle is directly influenced by 1) vent geometry and 2) the duration of the initial gas-only phase. After some delay, whose length depends on the experimental conditions, the jet incorporates particles becoming a gas-particle jet. Below we quantify how our experimental conditions affect the temporal evolution of these two phases (gas-only and gas-particle) of each jet. As expected, the gas spreading angle is always at least as large as the particle spreading angle. The latter is positively correlated with particle load and negatively correlated with particle size. Such empirical experimentally derived relationships between the observable features of the gas-particle jets and known initial conditions can serve as input for the parameterisation of equivalent observations at active volcanoes, alleviating the circumstances where an a priori knowledge of magma textures and ascent rate, temperature and gas overpressure and/or the geometry of the shallow plumbing system is typically chronically lacking. The generation of experimental parameterisations raises the possibility that detailed field investigations on gas-particle jets at frequently erupting volcanoes might be used for elucidating subsurface parameters and their temporal variability, with all the implications that may have for better defining hazard assessment.

2021 ◽  
Vol 7 ◽  
Author(s):  
Cody Ising ◽  
Pedro Rodriguez ◽  
Daniel Lopez ◽  
Jeffrey Santner

In combustion chemistry experiments, reaction rates are often extracted from complex experiments using detailed models. To aid in this process, experiments are performed such that measurable quantities, such as species concentrations, flame speed, and ignition delay, are sensitive to reaction rates of interest. In this work, a systematic method for determining such sensitized experimental conditions is demonstrated. An open-source python script was created using the Cantera module to simulate thousands of 0D and hundreds of 1D combustion chemistry experiments in parallel across a broad, user-defined range of mixture conditions. The results of the simulation are post-processed to normalize and compare sensitivity values among reactions and across initial conditions for time-varying and steady-state simulations, in order to determine the “most useful” experimental conditions. This software can be utilized by researchers as a fast, user-friendly screening tool to determine the thermodynamic and mixture parameters for an experimental campaign. We demonstrate this software through two case studies comparing results of the 0D script against a shock tube experiment and results of the 1D script against a spherical flame experiment. In the shock tube case study we present mixture conditions compared to those used in the literature to study H + O2 (+M)→HO2(+M). In the flame case study, we present mixture conditions compared to those in the literature to study formyl radical (HCO) decomposition and oxidation reactions. The systematically determined experimental conditions identified in the present work are similar to the conditions chosen in the literature.


1989 ◽  
Vol 54 (1) ◽  
pp. 91-101 ◽  
Author(s):  
Milan Stakić ◽  
Slobodan Milonjić ◽  
Vladeta Pavasović ◽  
Zoja Ilić

Ultrafiltration of three laboratory made silica and two commercial silica sols was studied using Amicon YC membrane in a 200 ml capacity batch-cell. The effect of silica particle size, stirring conditions, pressure, pH and silica contents on ultrafiltration was investigated. The results obtained indicate that the smaller particles have, disregarding the stirring conditions, lower filtration flux. The differences observed in filtration flux are more pronounced in the conditions without stirring. The obtained value of the membrane resistance is independent of the conditions investigated (stirring, pressure, pH, silica contents and particle size). The values of the resistance of polarized solids, specific resistance, and the mass of gel per membrane surface unit were calculated for all experimental conditions.


2021 ◽  
Vol 22 (15) ◽  
pp. 7879
Author(s):  
Yingxia Gao ◽  
Yi Zheng ◽  
Léon Sanche

The complex physical and chemical reactions between the large number of low-energy (0–30 eV) electrons (LEEs) released by high energy radiation interacting with genetic material can lead to the formation of various DNA lesions such as crosslinks, single strand breaks, base modifications, and cleavage, as well as double strand breaks and other cluster damages. When crosslinks and cluster damages cannot be repaired by the cell, they can cause genetic loss of information, mutations, apoptosis, and promote genomic instability. Through the efforts of many research groups in the past two decades, the study of the interaction between LEEs and DNA under different experimental conditions has unveiled some of the main mechanisms responsible for these damages. In the present review, we focus on experimental investigations in the condensed phase that range from fundamental DNA constituents to oligonucleotides, synthetic duplex DNA, and bacterial (i.e., plasmid) DNA. These targets were irradiated either with LEEs from a monoenergetic-electron or photoelectron source, as sub-monolayer, monolayer, or multilayer films and within clusters or water solutions. Each type of experiment is briefly described, and the observed DNA damages are reported, along with the proposed mechanisms. Defining the role of LEEs within the sequence of events leading to radiobiological lesions contributes to our understanding of the action of radiation on living organisms, over a wide range of initial radiation energies. Applications of the interaction of LEEs with DNA to radiotherapy are briefly summarized.


Minerals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 342
Author(s):  
Holger Lieberwirth ◽  
Lisa Kühnel

Confined bed comminution in high-pressure grinding rollers (HPGRs) and vertical roller mills (VRMs) was previously used preferably for grinding comparably homogeneous materials such as coal or clinker. Meanwhile, it started to complement or even replace tumbling mills in ore beneficiation with ore and gangue particles of rather different breakage behaviors. The selectivity in the comminution of a mixture of particles with different strengths but similar particle size distribution (PSD) of the constituents in a particle bed was investigated earlier. The strength of a material is, however, also a function of particle size. Finer particles tend to be more competent than coarser ones of the same material. In industrial ore processing using confined bed comminution, this effect cannot be neglected but even be exploited to increase efficiency. This paper presents research results on this topic based on experimental investigations with model materials and with natural particles, which were stressed in a piston–die press. It appeared that the comminution result substantially depends on the material characteristics, the composition of the mixture and the PSD of the constituents. Conclusions will be drawn for the future applications of selective comminution in mineral processing.


1981 ◽  
Vol 103 (1) ◽  
pp. 3-6 ◽  
Author(s):  
J. E. White ◽  
C. J. Cremers

Experimental investigations of frost deposition under forced convection conditions have shown that in most cases heat and mass transfer rates become constant after an initial transient period. It is shown that, in such cases, approximately half of the mass transfer from a humid air stream to a frost layer diffuses inward, condenses and increases the density of the frost. The other half is deposited at the surface and increases the thickness of the layer. Approximate expressions for density and thickness of the frost layer are derived and compared with data from the literature and also with experimental work reported in this paper. The correlations are shown to work well for a broad range of experimental conditions.


2014 ◽  
Vol 70 (1) ◽  
pp. 136-143 ◽  
Author(s):  
K. Y. Lee ◽  
K. W. Kim ◽  
Y. J. Baek ◽  
D. Y. Chung ◽  
E. H. Lee ◽  
...  

The uranium(VI) adsorption efficiency of non-living biomass of brown algae was evaluated in various adsorption experimental conditions. Several different sizes of biomass were prepared using pretreatment and surface-modification steps. The kinetics of uranium uptake were mainly dependent on the particle size of the prepared Laminaria japonica biosorbent. The optimal particle size, contact time, and injection amount for the stable operation of the wastewater treatment process were determined. Spectroscopic analyses showed that uranium was adsorbed in the porous inside structure of the biosorbent. The ionic diffusivity in the biomass was the dominant rate-limiting factor; therefore, the adsorption rate was significantly increased with decrease of particle size. From the results of comparative experiments using the biosorbents and other chemical adsorbents/precipitants, such as activated carbons, zeolites, and limes, it was demonstrated that the brown algae biosorbent could replace the conventional chemicals for uranium removal. As a post-treatment for the final solid waste reduction, the ignition treatment could significantly reduce the weight of waste biosorbents. In conclusion, the brown algae biosorbent is shown to be a favorable adsorbent for uranium(VI) removal from radioactive wastewater.


1991 ◽  
Vol 236 ◽  
Author(s):  
S. Metev ◽  
K. Meteva

AbstractIn the paper the results of a theoretical investigation of the growth process of laser-plasma deposited thin films are discussed. A kinetic approach has been used to establish direct relation between experimental conditions (laser flux density, substrate temperature) and film properties (thickness, structure). The results of some experimental investigations of the deposition process are presented confirming the general conclusions of the developed theoretical model.


2021 ◽  
Vol 13 ◽  
Author(s):  
Elena Gryaznova ◽  
Alexey Pustovalov

Background: The widespread use of the iron nanopowders connected with widely range of characteristics such as size, magnetic characteristics and high surface area and that is why in the literature are present many researches of its different applications. Objective: The work studies the influence of the conditions of the iron wire electrical explosion on the course of the explosion process and the dispersed composition of the resulting metal nanopoweder. Method: Experiments on electrical explosion of iron wires were carried out in the laboratory setup with the different initial conditions of electrical explosion of the iron wire. Results: The influence of the initial wire electrical explosion conditions on the explosion regime, the specific energy input into the conductor, and the specific energy released in the arc stage of discharge are definitely determined. The empirical equations for calculation of the initial wire electrical explosion conditions for providing the critical explosion in the argon medium at a pressure of 2·105 Pa were defined. It has been established that for synthesis of iron nanopowders with a narrow particle size distribution, it is preferable to use modes with a high level of the energy released in the arc stage of the discharge. Conclusion: It was found that disabling the arc stage of the discharge during EEW leads to the decreasing of the average surface particle size by 50%.


2017 ◽  
Vol 140 (3) ◽  
Author(s):  
Thella Babu Rao

One of the major advantages of metal matrix composites (MMCs) is that their tailorable properties meet the specific requirements of a particular application. This paper deals with the experimental investigations done on the effects of the reinforcement particulate size and content on the Al7075/SiC composite. The composites were manufactured using stir casting technique. The effect of SiC particle size (25, 50, and 75 μm) and particulate content (5, 10, and 15 wt %) on the microstructural, mechanical properties, and wear rate of the composites was studied and the results were analyzed for varied conditions of reinforcement. Scanning electron microscope (SEM) examinations were used to assess the dispersion of SiC particles reinforced into the matrix alloy and was found with reasonably uniform with minimal particle agglomerations and with good interfacial bonding between the particles and matrix material. X-ray diffraction (XRD) analysis confirmed the presence of Al and SiC with the composite. The results of mechanical tests showed that the increasing SiC particle size and content considerably enhanced the ultimate tensile strength and hardness of the composites while the ductility at this condition was decreased. The highest ultimate tensile strength of 310 MPa and hardness of 126 BHN were observed for the composites containing 15 wt %. SiC at 75 μm. Lesser the wear resistance of the reference alloy while it was enhanced up to 40% with the composites. The wear resistance was increased up to 1200 m of sliding distance for all the composites, whereas for the composite containing 75 μm SiC particles, it was extended up to 1800 m.


Sign in / Sign up

Export Citation Format

Share Document