X-ray spectroscopic diagnostics of the structure of quantum dots based on zinc and manganese sulfides and oxides

2017 ◽  
Vol 58 (8) ◽  
pp. 1683-1690
Author(s):  
I. A. Pankin ◽  
◽  
A. N. Kravtsova ◽  
O. E. Polozhentsev ◽  
A. P. Budnyk ◽  
...  
2017 ◽  
Vol 58 (8) ◽  
pp. 1633-1640
Author(s):  
I. A. Pankin ◽  
A. N. Kravtsova ◽  
O. E. Polozhentsev ◽  
A. P. Budnyk ◽  
A. A. Tsaturyan ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Tamara Sloboda ◽  
Sebastian Svanström ◽  
Fredrik O. L. Johansson ◽  
Aneta Andruszkiewicz ◽  
Xiaoliang Zhang ◽  
...  

AbstractTime-resolved photoelectron spectroscopy can give insights into carrier dynamics and offers the possibility of element and site-specific information through the measurements of core levels. In this paper, we demonstrate that this method can access electrons dynamics in PbS quantum dots over a wide time window spanning from pico- to microseconds in a single experiment carried out at the synchrotron facility BESSY II. The method is sensitive to small changes in core level positions. Fast measurements at low pump fluences are enabled by the use of a pump laser at a lower repetition frequency than the repetition frequency of the X-ray pulses used to probe the core level electrons: Through the use of a time-resolved spectrometer, time-dependent analysis of data from all synchrotron pulses is possible. Furthermore, by picosecond control of the pump laser arrival at the sample relative to the X-ray pulses, a time-resolution limited only by the length of the X-ray pulses is achieved. Using this method, we studied the charge dynamics in thin film samples of PbS quantum dots on n-type MgZnO substrates through time-resolved measurements of the Pb 5d core level. We found a time-resolved core level shift, which we could assign to electron injection and charge accumulation at the MgZnO/PbS quantum dots interface. This assignment was confirmed through the measurement of PbS films with different thicknesses. Our results therefore give insight into the magnitude of the photovoltage generated specifically at the MgZnO/PbS interface and into the timescale of charge transport and electron injection, as well as into the timescale of charge recombination at this interface. It is a unique feature of our method that the timescale of both these processes can be accessed in a single experiment and investigated for a specific interface.


2007 ◽  
Vol 06 (03n04) ◽  
pp. 215-219
Author(s):  
E. P. DOMASHEVSKAYA ◽  
V. A. TEREKHOV ◽  
V. M. KASHKAROV ◽  
S. YU. TURISHCHEV ◽  
S. L. MOLODTSOV ◽  
...  

Ultrasoft X-ray emission spectra (USXES) and X-ray absorption near-edge structure (XANES) spectra with the use of synchrotron radiation in the range of P L2,3-edges were obtained for the first time for nanostructures with InP quantum dots grown on GaAs 〈100〉 substrates by vapor-phase epitaxy from metal–organic compounds. These spectra represent local partial density of states in the valence and conduction bands. The additional XANES peak is detected; its intensity depends on the number of monolayers forming quantum dots. Assumptions are made on the band-to-band origin of luminescence spectra in the studied nanostructures.


2016 ◽  
Vol 18 (6) ◽  
pp. 4300-4303 ◽  
Author(s):  
J. Huang ◽  
Y. Tang ◽  
K. L. Mulfort ◽  
X. Zhang

In this work, we investigated photoinduced charge separation dynamics in a CdSe quantum dot/cobaloxime molecular catalyst hybrid using the combination of transient optical (OTA) and X-ray absorption (XTA) spectroscopy.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jason J. Calvin ◽  
Tierni M. Kaufman ◽  
Adam B. Sedlak ◽  
Michelle F. Crook ◽  
A. Paul Alivisatos

AbstractPowder X-ray diffraction is one of the key techniques used to characterize the inorganic structure of colloidal nanocrystals. The comparatively low scattering factor of nuclei of the organic capping ligands and their propensity to be disordered has led investigators to typically consider them effectively invisible to this technique. In this report, we demonstrate that a commonly observed powder X-ray diffraction peak around $$q=1.4{\AA}^{-1}$$ q = 1.4 Å − 1 observed in many small, colloidal quantum dots can be assigned to well-ordered aliphatic ligands bound to and capping the nanocrystals. This conclusion differs from a variety of explanations ascribed by previous sources, the majority of which propose an excess of organic material. Additionally, we demonstrate that the observed ligand peak is a sensitive probe of ligand shell ordering. Changes as a function of ligand length, geometry, and temperature can all be readily observed by X-ray diffraction and manipulated to achieve desired outcomes for the final colloidal system.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3368 ◽  
Author(s):  
Kefilwe Mokwebo ◽  
Oluwatobi Oluwafemi ◽  
Omotayo Arotiba

We report the preparation of poly (propylene imine) dendrimer (PPI) and CdTe/CdSe/ZnSe quantum dots (QDs) as a suitable platform for the development of an enzyme-based electrochemical cholesterol biosensor with enhanced analytical performance. The mercaptopropionic acid (MPA)-capped CdTe/CdSe/ZnSe QDs was synthesized in an aqueous phase and characterized using photoluminescence (PL) spectroscopy, ultraviolet-visible (UV-Vis) spectroscopy, transmission electron microscopy (TEM), X-ray power diffraction (XRD), energy dispersive X-ray (EDX) spectroscopy. The absorption and emission maxima of the QDs red shifted as the reaction time and shell growth increased, indicating the formation of CdTe/CdSe/ZnSe QDs. PPI was electrodeposited on a glassy carbon electrode followed by the deposition (by deep coating) attachment of the QDs onto the PPI dendrimer modified electrode using 1-Ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride (EDC), and N-hydroxysuccinimide (NHS) as a coupling agent. The biosensor was prepared by incubating the PPI/QDs modified electrode into a solution of cholesterol oxidase (ChOx) for 6 h. The modified electrodes were characterized by voltammetry and impedance spectroscopy. Since efficient electron transfer process between the enzyme cholesterol oxidase (ChOx) and the PPI/QDs-modified electrode was achieved, the cholesterol biosensor (GCE/PPI/QDs/ChOx) was able to detect cholesterol in the range 0.1–10 mM with a detection limit (LOD) of 0.075 mM and sensitivity of 111.16 μA mM−1 cm−2. The biosensor was stable for over a month and had greater selectivity towards the cholesterol molecule.


2008 ◽  
Vol 23 (4) ◽  
pp. 1155-1162 ◽  
Author(s):  
Yu-Yun Peng ◽  
Tsung-Eong Hsieh ◽  
Chia-Hung Hsu

Nanocomposite films containing ZnO quantum dots (QDs) and SiOxNy matrix were prepared by target-attached radio frequency sputtering. Photoluminescence (PL) dominated by violet and blue emissions was observed from all ZnO QD–SiOxNy nanocomposite films with dot diameters ranging from 2.77 to 6.65 nm. X-ray photoemission spectroscopy (XPS) revealed the formation of nitrogen-correlated bonding configurations in both the SiOxNy matrix and the dot/matrix interfaces. The nitrogen-correlated configuration at the interface produced a substantial polarization effect at dot surface. The suppression of green-yellow emission observed in photoluminescence spectra of all samples was ascribed to the hole-trapping process promoted by the enhancement of the surface polarization.


Sign in / Sign up

Export Citation Format

Share Document