scholarly journals Effect of Two Types of Fly Ash on Rheological and Filtration Properties of Water-Based Drilling Mud

2021 ◽  
pp. 223-235
Author(s):  
Emine YALMAN ◽  
Gabriella FEDERER-KOVACS ◽  
Tolga DEPCİ
1986 ◽  
Vol 86 ◽  
Author(s):  
George M. Deeley ◽  
Larry W. Canter ◽  
Joakim G. Laguros

Water based drilling muds typically contain clays, barite, lime, caustic soda and other chemicals, such as polymers. Land disposal of these wastes raises the possibility of groundwater pollution which can be abated if the waste is stabilized either by chemical reaction or by solidification through some form of cementation. Many ASTM high-calcium (Class C) fly ashes are cementitious and thus may be useful in stabilization of drilling mud. The basic idea is to stabilize the clay-containing muds using the model of soil and roadbed stabilization with high-calcium fly ash [1]. Fly ash that is not utilized is considered to be a solid waste, so this application would would actually constitute codisposal of two wastes.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4171
Author(s):  
Rabia Ikram ◽  
Badrul Mohamed Jan ◽  
Akhmal Sidek ◽  
George Kenanakis

An important aspect of hydrocarbon drilling is the usage of drilling fluids, which remove drill cuttings and stabilize the wellbore to provide better filtration. To stabilize these properties, several additives are used in drilling fluids that provide satisfactory rheological and filtration properties. However, commonly used additives are environmentally hazardous; when drilling fluids are disposed after drilling operations, they are discarded with the drill cuttings and additives into water sources and causes unwanted pollution. Therefore, these additives should be substituted with additives that are environmental friendly and provide superior performance. In this regard, biodegradable additives are required for future research. This review investigates the role of various bio-wastes as potential additives to be used in water-based drilling fluids. Furthermore, utilization of these waste-derived nanomaterials is summarized for rheology and lubricity tests. Finally, sufficient rheological and filtration examinations were carried out on water-based drilling fluids to evaluate the effect of wastes as additives on the performance of drilling fluids.


2017 ◽  
Vol 136 ◽  
pp. 96-102 ◽  
Author(s):  
Zhihua Luo ◽  
Jingjing Pei ◽  
Longxiang Wang ◽  
Peizhi Yu ◽  
Zhangxin Chen

2020 ◽  
pp. 70-74
Author(s):  
V.V. Guliyev ◽  
◽  
◽  

Currently, a great number of drilling fluids with different additives are used all over the world. Such additives are applied to control the properties of the drilling mud. The main purpose for controlling is to achieve more effective and safe drilling process. This research work aims to develop Water-Based Mud (WBM) with a Coefficient of Friction (CoF) as low as Oil-Based Mud (OBM) and better rheological properties. As it is known, produced CoF by WBM is higher than OBM, which means high friction between wellbore or casing and drill string. It was the reason for studying the effect of nanosilica on drilling fluid properties such as lubricity, rheological parameters and filtrate loss volume of drilling mud. The procedures were carried out following API RP 13B and API 13I standards. Five concentrations of nanosilica were selected to be tested. According to the results obtained, it was defined that adding nanosilica into the mud decreases CoF of basic WBM by 26 % and justifies nanosilica as a good lubricating agent for drilling fluid. The decreasing trend in coefficient of friction and plastic viscosity for nanosilica was obtained until the concentration of 0.1 %. This reduction is due to the shear thinning or pseudoplastic fluid behavior. After 0.1 %, an increase at PV value trend indicates that it does not follow shear thinning behavior and after reaching a certain amount of dissolved solids in the mud, it acts like normal drilling fluid. The yield point of the mud containing nanoparticles was higher than the basic one. Moreover, a growth in the concentration leads to an increase in yield point value. The improvement of this fluid system cleaning capacity via hydraulics modification and wellhole stability by filter cake endurance increase by adding nanosilica is shown as well. The average well construction data of “Neft Dashlary” field was used for the simulation studies conducted for the investigation of hydraulics parameters of reviewed fluids for all series of experiments. The test results were accepted reliable in case of at least 3 times repeatability.


2021 ◽  
Vol 1 (2) ◽  
Author(s):  
Osei H

High demand for oil and gas has led to exploration of more petroleum resources even at remote areas. The petroleum resources are found in deeper subsurface formations and drilling into such formations requires a well-designed drilling mud with suitable rheological properties in order to avoid or reduce associated drilling problems. This is because rheological properties of drilling muds have considerable effect on the drilling operation and cleaning of the wellbore. Mud engineers therefore use mud additives to influence the properties and functions of the drilling fluid to obtain the desired drilling mud properties especially rheological properties. This study investigated and compared the impact of barite and hematite as weighting agents for water-based drilling muds and their influence on the rheology. Water-based muds of different concentrations of weighting agents (5%, 10%, 15% and 20% of the total weight of the drilling mud) were prepared and their rheological properties determined at an ambient temperature of 24ᵒC to check their impact on drilling operation. The results found hematite to produce higher mud density, plastic viscosity, gel strength and yield point when compared to barite at the same weighting concentrations. The higher performance of the hematite-based muds might be attributed to it having higher specific gravity, better particle distribution and lower particle attrition rate and more importantly being free from contaminants. The water-based muds with hematite will therefore be more promising drilling muds with higher drilling and hole cleaning efficiency than those having barite.


Sign in / Sign up

Export Citation Format

Share Document