scholarly journals Performance of Concrete MRF at Near-Field Earthquakes Compared to Far-Field Earthquakes

2019 ◽  
Vol 5 (4) ◽  
pp. 759-766 ◽  
Author(s):  
Farzaneh Raji ◽  
Amir Naeiji

The characteristic of near-field earthquake records has been investigated in the previous studies. However, the effects of the near-field earthquakes on the response of the building structures need to be further investigated. Engineering demand parameters like inter-story drift ratio and floor acceleration can provide a good means for comparing the response of structures to the near-field and the far-field earthquakes. The main objective of this paper was to apply these two parameters to compare the behavior of the concrete Moment Resistant Frame (MRF) subjected to near-field and far-field ground motions. In this study, non-linear numerical simulations were performed on concrete MRF office buildings subjected to two sets of 14 near-field records and 14 far-field records. The analytical models simulated 4-story, 8-story, and 16 story buildings. The obtained results indicated that the near-field effects can increase the inter-story drift ratio and floor acceleration at lower stories of low and mid-rise building subjected to high ground motion intensities.

2013 ◽  
Vol 275-277 ◽  
pp. 1466-1470
Author(s):  
Yang Liu ◽  
Wen Guang Liu ◽  
Wen Fu He ◽  
Qiao Rong Yang

The equivalent velocity spectrum as a new ground motion intensity measure (IM) characterization parameter is proposed in this paper. 44 far field ground motions and 20 near-field high-speed pulse seismic waves were used for single-degree-freedom (SDOF) nonlinear time history analysis, respectively. The correlations between five IMs and maximum deformation for SDOF at various periods and different yield coefficients were analyzed. The results show that for the structures with medium-to-long period, the correlation coefficient average value of the proposed equivalent speed and maximum deformation is more than 0.6, and maximum of those is more than 0.9. The correlation coefficient average value by using the proposed equivalent speed under far field ground motions is more than those under near field ground motions. The P-delta effect on the correlation coefficients between proposed IM for the structures with medium-to-short period is significant


Abstract. Seismic fragility analysis is essential for seismic risk assessment of structures. This study focuses on the damage probability assessment of the mid-story isolation buildings with different locations of the isolation system. To this end, the performance-based fragility analysis method of the mid-story isolation system is proposed, adopting the maximum story drifts of structures above and below the isolation layer and displacement of the isolation layer as performance indicators. Then, the entire process of the mid-story isolation system, from the initial elastic state to the elastic-plastic state, then to the limit state, is simulated on the basis of the incremental dynamic analysis method. Seismic fragility curves are obtained for mid-story isolation buildings with different locations of the isolation layer, each with fragility curves for near-field and far-field ground motions, respectively. The results indicate that the seismic fragility probability subjected to the near-field ground motions is much greater than those subjected to the far-field ground motions. In addition, with the increase of the location of the isolation layer, the dominant components for the failure of mid-story isolated structures change from superstructure and isolation system to substructure and isolation system.


2020 ◽  
Vol 36 (3) ◽  
pp. 1485-1516
Author(s):  
Jui-Liang Lin ◽  
Wen-Hui Chen ◽  
Fu-Pei Hsiao ◽  
Yuan-Tao Weng ◽  
Wen-Cheng Shen ◽  
...  

A shaking table test of a three-story reinforced concrete (RC) building was conducted. The tested building is vertically irregular because of the first story’s elevated height and the third story’s added RC walls. In addition to far-field ground motions, near-fault ground motions were exerted on this building. A numerical model of the three-story building was constructed. Comparing with the test results indicates that the numerical model is satisfactory for simulating the seismic response of the three-story building. This validated numerical model was then further applied to look into two issues: the effective section rigidities of RC members and the effects of near-fault ground motions. The study results show the magnitude of the possible discrepancy between the actual seismic response and the estimated seismic response, when the effective section rigidities of the RC members are treated as in common practice. An incremental dynamic analysis of the three-story RC building subjected to one far-field and one near-fault ground motion, denoted as CHY047 and TCU052, respectively, was conducted. In comparison with the far-field ground motion, the near-fault ground motion is more destructive to this building. In addition, the effect of the selected near-fault ground motion (i.e. TCU052) on the building’s collapse is clearly identified.


1995 ◽  
Vol 11 (1) ◽  
pp. 129-160 ◽  
Author(s):  
Paul C. Rizzo ◽  
N. R. Vaidya ◽  
E. Bazan ◽  
C. F. Heberling

Comparisons of response spectra from near and far-field records to those estimated by attenuation functions commonly used in evaluating seismic hazards show that these functions provide reasonable results for near-field western North American sites. However, they estimate relatively small motions for far-field eastern North American sites, which is contrary to the empirical evidence of the 1886 Charleston and 1988 Saguenay Earthquakes. Using the 1988 Saguenay records scaled for magnitude, and several western North American records scaled to account for the slower attenuation in the east, we have developed deterministic median and 84th percentile, 5 percent damped response spectra to represent ground motions from a recurrence of the 1886 Charleston Earthquake at a distance between 85 to 120 km. The resulting 84th percentile spectrum has a shape similar to, but is less severe than, the USNRC Regulatory Guide 1.60 5 percent damped spectrum tied to a peak ground acceleration of 0.2g.


2018 ◽  
Vol 12 (05) ◽  
pp. 1850011 ◽  
Author(s):  
Jiang Yi ◽  
Jianzhong Li ◽  
Zhongguo Guan

To investigate the effectiveness of viscous damper on seismic control of single-tower cable-stayed bridges subjected to near-field ground motions, a 1/20-scale full cable-stayed bridge model was designed, constructed and tested on shake tables. A typical far-field ground motion and a near-field one were used to excite the bridge model from low to high intensity. The seismic responses of the bridge model with and without viscous dampers were analyzed and compared. Both numerical and test results revealed that viscous dampers are quite effective in controlling deck displacement of cable-stayed bridges subjected to near-field ground motions. However, due to near-field effects, viscous damper dissipated most energy through one large hysteresis loop, extensively increasing the deformation and damping force demand of the damper. Further study based on numerical analysis reveals that to optimize deck displacement of cable-stayed bridges during an earthquake, a viscous damper with relatively larger damping coefficient should be introduced under near-field ground motions than far-field ones.


2014 ◽  
Vol 17 (11) ◽  
pp. 1623-1638 ◽  
Author(s):  
R. Roy ◽  
P. Thakur ◽  
S. Chakroborty

In the context of performance-based seismic design (PBSD), ground motions are often scaled to certain convenient target spectra derived from probabilistic seismic hazard analysis (PSHA). While Uniform Hazard Spectrum (UHS) is more widely used, Conditional Mean Spectrum (CMS) is recently proposed to be more desirable for scaling of real accelerograms. In this backdrop, a set of near-field and far-field ground motions are spectrally scaled, using wavelets, to both UHS and CMS. Seismic demand of horizontally irregular structures under bi-directional ground motion is assessed under both scaled and seed records in the elastic range. Spectral matching, within limits, of both the horizontal components of real records to a single hazard spectrum is observed to adequately predict the amplification in response due to asymmetry (at least for the records and target spectra relevant to soil class D). Further, such scaling effectively reduces the variability in predicted magnification from one ground motion to other. Dynamic amplification factors recommended in international codes to apply in equivalent static design of asymmetric systems are shown to be deficient.


2020 ◽  
Vol 110 (4) ◽  
pp. 1506-1516 ◽  
Author(s):  
Susan E. Hough ◽  
Sang-Ho Yun ◽  
Jungkyo Jung ◽  
Eric Thompson ◽  
Grace A. Parker ◽  
...  

ABSTRACT Shaking from the 6 July 2019 Mw 7.1 Ridgecrest, California, mainshock was strongly felt through southern California, but generated relatively minimal structural damage in Ridgecrest. We consider the extent to which a damage proxy map (DPM) generated from satellite-based Synthetic Aperture Radar images can detect minor damage throughout the town of Ridgecrest. The DPM does not, as expected, detect all minor structural damage to individual structures, nor can it distinguish between structural damage and earthquake-related movement that is not consequential. However, the DPM does confirm many instances of minor structural damage to larger structures and groups of smaller structures and in some instances suggests minor structural damage that is not apparent upon visual inspection. Although ambiguous identification of minor damage may not be useful to guide earthquake response, the identification of minor, possibly hidden damage is potentially useful for other purposes. Overall, the DPM confirms that structural damage was commensurate with modified Mercalli intensity no higher than 7 throughout Ridgecrest. We consider both instrumental and intensity data to explore further the distribution of near-field ground motions over the frequency range of engineering concern. Peak ground accelerations and peak ground velocities estimated from “Did You Feel It?” intensity data using the Worden et al. (2012) ground-motion intensity conversion equation (GMICE) are consistent with recorded instrumental data. Both instrumental and estimated mainshock peak accelerations are further consistent with predictions from both the Boore et al. (2014) ground-motion prediction equation (GMPE), but lower than predicted by the Atkinson and Wald (2007) and Atkinson et al. (2014) intensity prediction equations (IPEs). A GMPE such as Boore et al. (2014), which is constrained by a large global dataset, together with a well-constrained GMICE, may thus characterize expected shaking intensities for large earthquakes better than an IPE based on more limited intensity data.


2020 ◽  
Vol 156 ◽  
pp. 02011
Author(s):  
Widodo Pawirodikromo ◽  
Lalu Makrup ◽  
Mochamad Teguh ◽  
Bambang Suryo

This paper presents the development of synthetic ground motion at specific sites in Yogyakarta town. In the 2019 Indonesian Seismic Code [1] provides an alternative method in the analysis of building structures by applying the dynamic time history analysis. At least 11-pairs of earthquake recordings must be used in the analysis. Synthetic ground motion utilizing the Method of Probability Seismic Hazard Analysis (PSHA) was used in this study. A selected site in Yogyakarta town was chosen as a pilot study considering that there were many fatalities and building damage caused by the 2006 Yogyakarta earthquake. The Uniform Hazard Spectra (UHS) based on the shallow crustal earthquake source is higher than the Megathrust. The risk targeted spectrum demand MCEr has been considered, which on average 12.3% greater than the UHS. The synthetic ground motions (SGM) are accordingly based on the shallow crustal earthquakes. The dominant magnitude and distance are MD = 6.5 and RD = 14.5 km. They show that the contribution of the Opak River fault to the hazard in Yogyakarta town is very dominant because the distance is very close. Based on the obtained MD and RD, spectral matching, and testing significant duration D595, the 12-synthetic ground motions were successfully developed.


Sign in / Sign up

Export Citation Format

Share Document