scholarly journals Performance of Circular Footing on Expansive Soil Bed Reinforced with Geocells of Chevron Pattern

2019 ◽  
Vol 5 (11) ◽  
pp. 2333-2348
Author(s):  
Sanjeev Kumar ◽  
Anil Kumar Sahu ◽  
Sanjeev Naval

Results from laboratory model tests performed on circular footing are presented in this paper to understand the performance of geocell reinforced expansive soil. Naturally occurring expansive soil was used in this study as subsoil. Geocells of chevron pattern fabricated from geotextile made up of polypropylene were used to reinforce the soil bed. The parameters studied in this testing program were the placement depth of the geocell mattress, pocket size of geocell and the height of geocell mattress. Contrary to other researchers; the improvement in the performance of reinforced bed is evaluated at a settlement level equal to the failure settlement of unreinforced soil bed. The performance of reinforced bed is evaluated through two non-dimensional factors viz. bearing capacity improvement factor (If) and settlement reduction factor (PRS%). Test results indicated that with the introduction of geocell as reinforcement, a substantial improvement in bearing capacity and decrease in footing settlement can be achieved. Bearing capacity of reinforced bed increases by more than 200% and 81% reduction in footing settlement was achieved by using geocell mattress of optimal dimensions and placing it just below the footing base.

2020 ◽  
Vol 331 ◽  
pp. 02005
Author(s):  
Sofwan ◽  
Sukiman Nurdin

This research is intended to increase the bearing capacity and durability of expansive clay subgrade with Portsoil Composite Cement (PCC) and Iron Oxide additives. Using two variants of the stabilization material composition; composition-1 is soil with 5% of PCC, and composition-2 is soil with 5% PCC + 0. 04% Iron Oxide). Tests include swelling potential, durability, and CBR (California Bearing Ratio). The test results showed that the performance of stabilization using composition-2 was able to reduce swelling potential on day 3 by 94. 44% (14. 44% greater than using composition-1), reducing the potential for volume increment by 94. 15% (greater 15. 02% compared to using composition-1) and weight to 93. 31% (15. 32% greater than using first). The highest CBR value in the 3 wet-dry cycle periods was nature soil 2. 32%, using composition-1 reached 25. 26%, while using composition-2 reached 36. 93% (11. 67% greater than CBR value using composition-1). That the addition of 0. 04% Iron Oxide to PCC-soil stabilization can significantly improve cement performance for expansive clay stabilization as a road subgrade.


2015 ◽  
Vol 773-774 ◽  
pp. 1518-1523 ◽  
Author(s):  
Aminaton Marto ◽  
Mohsen Oghabi ◽  
Nor Zurairahetty Mohd Yunus

Bearing capacity and settlement are two important parameters in geotechnical engineering. The bearing capacity of circular foundations on sandy soils is important to geotechnical practicing engineers. Design of foundations includes soil parameters and bearing capacity of foundation. This paper presents the results of laboratory experimental model tests of circular footings supported on sand deposit under static load. The finite element software Abaqus is used to compare the results. The effects of the relative density of the sand (30%, 50%, and 70%) and the diameter of circular footing (75 mm and 100 mm) are investigated. It can be concluded that the experimental test results fit quite well with the results of numerical method.


1993 ◽  
Vol 30 (3) ◽  
pp. 545-549 ◽  
Author(s):  
M.T. Omar ◽  
B.M. Das ◽  
V.K. Puri ◽  
S.C. Yen

Laboratory model test results for the ultimate bearing capacity of strip and square foundations supported by sand reinforced with geogrid layers have been presented. Based on the model test results, the critical depth of reinforcement and the dimensions of the geogrid layers for mobilizing the maximum bearing-capacity ratio have been determined and compared. Key words : bearing capacity, geogrid, model test, reinforced sand, shallow foundation.


Author(s):  
Braja M. Das ◽  
Kim H. Khing ◽  
Eun C. Shin

The load-bearing capacity of a weak clay subgrade can be increased by placing a strong granular base course of limited thickness on top of the clay layer. The load-bearing capacity can be increased further, or the thickness of the granular base course can be reduced, by separating both layers by a geogrid. Laboratory model test results for the ultimate bearing capacity of a rigid strip loading on the surface of a granular soil underlain by a soft clay with a layer of geogrid at the interface of the two soils are presented. The optimum thickness of the granular soil layer and the critical width of the geogrid layer required to derive the maximum benefit from the reinforcement were determined. Model test results on the permanent settlement of the rigid strip load caused by cyclic loading of low frequency are presented.


2007 ◽  
Vol 4 (1) ◽  
pp. 11 ◽  
Author(s):  
M.Y. Al-Aghbari

This paper presents the findings of an experimental study concerning a method of reducing the settlement of shallow circular foundations on sand. It involves the use of structural skirts fixed to the edges of foundations. The experiments were performed in a large tank setting and the footing was instrumented in order to measure normal stresses and settlement. A series of tests were conducted to study the settlements of a circular footing with and without structural skirts. Test results indicate that this type of reinforcement reduces the settlement of subgrade and modifies the stress-displacement behaviour of the footing. A settlement Reduction Factor (SRF) was proposed, which takes into account the influence of various parameters that affect settlements. Results show that the use of structural skirts can produce enhanced settlement reduction in the range of 0.1 to 1.0 depending on stress applied and skirt depth. Given these levels of settlements reduction, it is concluded that the use of structural skirts to reduce the settlement of shallow foundations on dense sand is of practical significance. Further testing is recommended for different foundation shapes with structural skirts resting on different soil types. 


2021 ◽  
Vol 14 (15) ◽  
Author(s):  
Mohammad Mahdi Hajitaheriha ◽  
Davood Akbarimehr ◽  
Amin Hasani Motlagh ◽  
Hossein Damerchilou

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
A. Hemalatha ◽  
N. Mahendran ◽  
G. Ganesh Prabhu

The experimental investigation on the effects of granular fill and geogrid reinforced granular fill on the behaviour of the static liquefaction potential of the subsoil is reported in this study. A series of plate load test were carried out with different thickness of the granular fill, number of geogrid layers, and size/dimension of the footing. The test results were presented in terms of bearing capacity and subgrade modulus for the settlement ofδ10,δ15, andδ20. The experimental results revealed that the introduction of granular fill significantly increases the bearing capacity and effectively control the settlement behaviour of the footing. The introduction of geogrid in granular fill enhanced the Percentage of Control in Settlement and Bearing Capacity Ratio by a maximum of 328.54% and 203.41%, respectively. The introduction of geogrid in granular fill interrupts the failure zone of the granular fill and enhances the subgrade modulus of the footing by a maximum of 255.55%; in addition subgrade modulus of the footing was increased with an increase in the number of geogrid layers. Based on the test results it is suggested that the footing with large size has beneficial improvement on the reinforced granular fill.


2014 ◽  
Vol 488-489 ◽  
pp. 497-500
Author(s):  
You Lin Zou ◽  
Pei Yan Huang

Deem test results from the low reversed cyclic loading quasi-static test with 2 RC columns as the basic information of secant stiffness damage of the reference column and take use of the TMS instrument in the test to artificially make the damage percentage of secant stiffness of the RC column as 33%, 50% and 66%, 6 damaged columns in total; reinforce the 6 damaged columns and 2 undamaged ones under the same conditions with AFL, through quasi-static contrast test. Test results show that it is able to effectively boost horizontal ultimate bearing capacity and ductility deformability of the RC columns with AFL for reinforcement; besides, there is a linear function relationship between horizontal ultimate bearing capacity, target ductility factor, and damage percentage of secant stiffness.


Sign in / Sign up

Export Citation Format

Share Document