scholarly journals Effect of Maximum Aggregate Size on the Strength of Normal and High Strength Concrete

2020 ◽  
Vol 6 (6) ◽  
pp. 1155-1165
Author(s):  
Gaith Abdulhamza Mohammed ◽  
Samer Abdul Amir Al-Mashhadi

Aggregates form 60% to 75% of concrete volume and thus influence its mechanical properties. The strength of (normal or high-strength) concrete is affected by the maximum size of a well-graded coarse aggregate. Concrete mixes containing larger coarse aggregate particles need less mixing water than those containing smaller coarse aggregates, In other words, small aggregate particles have more surface area than a large aggregate particle. In this research, about twenty-two mixtures were covered to study the effect of the MSCA, on compressive strength of (normal strength concrete) and Sixteen mixtures to study the effect of the maximum size of coarse aggregate on compressive strength for (high strength concrete). The concrete mixture is completely redesigned according to the maximum size of coarse aggregate needs and maintaining uniform workability for all sizes of coarse aggregate. The American design method was adopted ACI 211.1, for normal concrete. ACI 211-4R, the design method was adopted for high strength concrete. And use the MSCA with dimensions (9.5, 12.5, 19, 25, 37.5, and 50) mm for normal strength concrete and the MSCA (9.5, 12.5, 19, and 25) mm for high strength concrete. The slump was fixed (75-100) mm for normal strength concrete. Slump is fixed to (25-50) mm for high strength concrete before added Superplasticizer high range water reducer (HRWR). With Fineness Modulus (F.M) fixed to 2.8 for both normal concrete and high-strength concrete. According to the results of the tests, the compressive strength increases with the increase in the MSCA, of the normal concrete and also high – strength concrete. And the effect of the MSCA, on the compressive strength of normal concrete, is higher than that of high-strength concrete.

2015 ◽  
Vol 1768 ◽  
Author(s):  
Luis E. Rendon Diaz Miron ◽  
Maria E. Lara Magaña

ABSTRACTIn the early 1970s, experts predicted that the practical limit of ready-mixed concrete would be unlikely to exceed a compressive strength greater than 90 MPa [1]. Over the past two decades, the development of high-strength concrete has enabled builders to easily meet and surpass this estimate. The primary difference between high-strength concrete and normal-strength concrete relates to the compressive strength that refers to the maximum resistance of a concrete sample to applied pressure. Although there is no precise point of separation between high-strength concrete and normal-strength concrete, the American Concrete Institute defines high-strength concrete as concrete with a compressive strength greater than 45 MPa. Manufacture of high-strength concrete involves making optimal use of the basic ingredients that constitute normal-strength concrete. When selecting aggregates to obtain high-strength concrete, we consider strength, optimum size distribution, surface characteristics and a good bonding with the cement paste that affect compressive strength. Selecting a high-quality Portland cement and optimizing the combination of materials by varying the proportions of cement, water, aggregates, and admixtures is also necessary. Any of these properties could limit the ultimate strength of high-strength concrete. Pozzolans, such as fly ash and silica fume along with silicic acid, are the most commonly used mineral admixtures in high-strength concrete. These materials impart additional strength to the concrete by reacting with Portland cement hydration products to create additional Calcium Silicate Hydrate (CSH) gel, the part of the paste responsible for concrete strength; finally the most important admixture is polycarboxylate ether as super plasticizer. It would be difficult to produce high-strength ready-mixed concrete without using chemical admixtures. In this paper we study the use of high performance concrete (HPC) to obtain very narrow strong pre-fabricated elements for water conducting channels.


2014 ◽  
Vol 605 ◽  
pp. 147-150
Author(s):  
Seong Uk Hong ◽  
Seung Hun Kim ◽  
Yong Taeg Lee

This study used the ultrasonic pulse velocity method, one of the non-destructive test methods that does not damage the building for maintenance of to-be-constructed concrete structures using recycled aggregates in order to estimate the compressive strength of high strength concrete structure using recycled coarse aggregate and provide elementary resources for technological establishment of ultrasonic pulse velocity method. 200 test pieces of high strength concrete 40, 50MPa using recycled coarse aggregate were manufactured by replacement rates (0, 30, 50, 100%) and age (1, 7, 28, 180days), and air curing was executed to measure compressive strength and wave velocity. As the result of compressive strength measurement, the one with age of 180day and design strength of 40MPa was 43.69MPa, recycled coarse aggregate replacement rate of 30% 50% 100% were 42.82, 41.22, 37.35MPa, and 50MPa was 52.50MPa, recycled coarse aggregate replacement rate of 30% 50% 100% were 49.02, 46.66, 45.30MPa, and while it could be seen that the test piece substituted with recycled aggregate was found to have lower strength than the test piece with natural aggregate only, but it still reached the design strength to a degree. The correlation of compressive strength and ultrasonic pulse velocity was found and regression analysis was conducted. The estimation formula for compressive strength of high strength concrete using recycled coarse aggregate was found to be Fc=0.069Vp4.05, R2=0.66


2018 ◽  
Vol 21 (11) ◽  
pp. 1723-1732 ◽  
Author(s):  
Venkatesh KR Kodur

High-strength concrete is being increasingly used in a number of building applications, where structural fire safety is one of the primary design considerations. Many research studies clearly indicate that the fire performance of high-strength concrete is different from that of normal-strength concrete and that high-strength concrete may not exhibit same level of performance as normal-strength concrete under fire conditions. This article outlines key characteristics that influence the performance of high-strength concrete structural members under fire conditions. Data generated in previous experimental and numerical studies are utilized to illustrate various factors that influence fire performance of high-strength concrete structural members. Based on the published data, observations and trends on the behavior of high-strength concrete members, innovative strategies for mitigating spalling and enhancing fire resistance of high-strength concrete structural members are proposed.


2000 ◽  
Vol 3 (3) ◽  
pp. 245-253 ◽  
Author(s):  
P. Mendis ◽  
C. French

The use of high-strength concrete is becoming popular around the world. The american code, ACI 318–95 is used in many countries to calculate the development length of deformed bars in tension. However, current design provisions of ACI 318–95 are based on empirical relationships developed from tests on normal strength concrete. The results of a series of tests on high-strength concrete, reported in the literature, from six research studies are used to review the existing recommendations in ACI 318–95 for design of splices and anchorage of reinforcement. It is shown that ACI 318–95 equations may be unconservative for some cases beyond 62 MPa (9 ksi).


2018 ◽  
Vol 20 (2) ◽  
pp. 65-70
Author(s):  
Endah Kanti Pangestuti ◽  
Sri Handayani ◽  
Mego Purnomo ◽  
Desi Christine Silitonga ◽  
M. Hilmy Fathoni

Abstract. The use of coal waste (Fly Ash) is currently being developed in building materials technology, as a high-strength concrete mix material. This study aims to determine the strength of concrete by adding fly ash as a substitute for cement in high-strength concrete mixtures. This research was conducted with an experimental method to obtain results and data that would confirm the variables studied. The total number of specimens used in this study were 36 pieces with different sizes of cube tests which were 15 cm x 15 cm x 15 cm. A total of 36 concrete samples were used to test the compressive strength of concrete with a percentage of Fly Ash in  0% (normal concrete), 20%, 25% and 30% with a concrete treatment age of 7 days, 21 days and 28 days. A total of 12 more samples were used to test water absorption in concrete at 28 days of maintenance. Each percentage percentage of Fly Ash uses 3 concrete test samples. The increase in compressive strength occurs at 7, 21 and 28 days in concrete. However, the compressive strength of concrete produced by concrete using the percentage of Fly Ash is always lower than the value of normal concrete compressive strength. From testing the compressive strength of concrete at 28 days of treatment with content of 0%, 20%, 25% and 30% Fly Ash obtained results of 45.87 MPa, 42.67 MPa, 40.89 MPa, and 35.27 MPa respectively


2012 ◽  
Vol 446-449 ◽  
pp. 718-727
Author(s):  
Hamid Reza Azizipesteh Baglo ◽  
Mohammed Raoof

In a number of previous publications, results were reported for a series of extensive and carefully conducted tests on large scale reinforced concrete (R.C.) beams with various extents of loss of concrete cover and exposure of main reinforcement along their spans, with such areas of simulated damage being located within their regions which are dominated by either shear or flexure. These tests on R.C. beams made with normal strength concrete have covered a wide range of first order beam design parameters, with their results used to verify the generality of various theoretical models. In the present paper, much attention will be devoted to various structural characteristics (such as ultimate strength, flexural stiffness, etc.) of similar damaged R.C. beams with the proviso that, instead of the previously used normal strength concrete, the beams are made with high strength concrete. No such results (for high strength R.C. beams) have previously been reported in the public domain.


2016 ◽  
Author(s):  
Iakov Iskhakov ◽  
Yuri Ribakov

<p>Steel fibered high strength concrete (SFHSC) is effective for repairing structures from normal strength concrete (NSC). Design of NSC structures that should be repaired is based on general concepts for design of two-layer beams, developed by the authors. Such beams are effective when their section carries large bending moments. Steel fibers increase the ultimate deformations of high strength concrete. The required ductility level of the repaired element is achieved by selecting appropriate fibers' content. This is important for design of structures to dynamic loadings. The paper is focused on interpreting the experimental data in order to find the optimal fibre content and correspondingly the highest Poisson coefficient and ductility of the repaired elements’ sections. The experimental results, obtained in the frame of this study, form a basis for provisions, related to repairing of NSC beams and slabs, using SFHSC.</p>


2014 ◽  
Vol 7 (2) ◽  
pp. 16-29
Author(s):  
Mohammed Karem Abd ◽  
Zuhair Dhaher Habeeb

This study aims to show the effect of specimen size and shape on compressive strength of self-compacting concrete (SCC). The work is divided into two parts, the first was to designed Normal Concrete (NC), High Strength Concrete (HSC) and Self Compacting Concrete (SCC) of strength between (25-70) MPa. from locally available materials. The values percent of cylinder to cube strength were between (0.86-0.9), (0.94-0.96), (0.96-0.99) of NC, HSC and SCC respectively.The second is to investigate the effect of specimen size on compressive strength, the values of correction factor of cube specimens (150*150*150)mm and (100*100*100)mm is (0.89-1.29), (0.98-1.26) and (0.98-1.22) of NC,HSC and SCC respectively. The values of correction factor of cylinder specimens of (150*300) mm and (100*200) mm is (0.88-1.08), (0.93-1.07) and (0.95-1.04) of NC, HSC and SCC respectively.


1993 ◽  
Vol 20 (4) ◽  
pp. 696-707 ◽  
Author(s):  
H. Marzouk ◽  
Z. W. Chen

Concrete slabs supported on four edges and loaded axially and transversely are used in many civil engineering applications. High-strength concrete slabs are commonly used for marine structures and offshore platforms. The catastrophic nature of the failure exhibited by reinforced concrete slabs when subjected to concentrated loads has been a major concern for engineers over many years. Therefore, there is a great need to develop accurate numerical models suitable for normal-strength or high-strength concrete in order to reflect properly its structural behaviour.Proper simulation of the post-cracking behaviour of concrete has a significant effect on the nonlinear finite element response of such slabs. Cracking and post-cracking behaviour of concrete which includes aggregate interlock, dowel action, and tension-stiffening effects is especially crucial for any nonlinear concrete analysis. The post-cracking behaviour and the fracture energy properties of high-strength concrete are different from those of normal-strength concrete. This can be realized by comparing the experimental testing results of plain normal- and high-strength concrete. The experimental results of testing plain high-strength concrete in direct tension indicated that the total area under the stress - crack width curve in tension is different from that of normal-strength concrete.A suitable softening and tension-stiffening model is recommended for high-strength concrete; other existing models suitable for normal-strength concrete are discussed. The proposed post-cracking behaviour models are implemented in a nonlinear finite element program in order to check the validity of such models by comparing the actual experimental data with the finite element results. Finally, a parametric study was conducted to provide more insight into the behaviour of high-strength concrete slabs subjected to combined uniaxial in-plane loads and lateral loads. The effects of the magnitude of in-plane load and the sequence of loading on the structural behaviour of such slabs are examined. Key words: high-strength concrete, slabs, punching shear, fracture energy, tension-softening, tension-stiffening, parametric study.


Sign in / Sign up

Export Citation Format

Share Document