scholarly journals Analytical and Numerical Model of Aluminum Alloy Swaging Ring Design to Study the Effect on the Sealing for Piping Systems

2021 ◽  
Vol 7 (1) ◽  
pp. 107-117
Author(s):  
Ahmet Atak

In various fields of engineering, the assembly and repair of hydraulic installations are accomplished by joining the pipes. In such applications, the ring swaging method is used to connect the fittings to the pipes by means of a hydraulic hand tool. The basis to develop a swaging tool relies on the knowledge of the design parameter that influence plastic deformation of the swaging ring. In addition to build control over the design parameters, it is necessary to join pipes under severe conditions such as cryogenic vacuum and constrained space which require an intact sealing. In this study, the effect of swaging ring designs on sealing and strength has been examined and different swaging methods have been investigated by finite element modeling methods. Based on the obtained results, the analysis methodology of ring swaging and the characteristic impact of swaging ring design on the sealing of pipe connection are shown. The prime novelty of the study is to report the impact of swaging ring design and geometry on sealing efficiency of the pipe connection. The results of the study open new avenues for the development of efficient tools for designing swaging rings. Doi: 10.28991/cej-2021-03091641 Full Text: PDF

2021 ◽  
Author(s):  
Ahmet Atak

Installation and repair of hydraulic installations are carried out by joining the pipes in the field. Pipe connections in aviation are made in a very narrow space and field. For this reason, fitting swaging method is used to connect the fittings to the pipes with a hydraulic hand tool. The basis for developing a swaging tool is knowledge of the design parameters for the plastic deformation of the swaging circle fitting. In addition to the design parameter, pipes have to be joined in cryogenic vacuum conditions, which require sealing in such sensitive and harsh conditions. In this study, the effect of swaged circle fitting designs on tightness and strength was determined and different swaging methods were examined for its improvement. Different geometric swaged circle fittings are designed and analytical and numerical models are solved. The solution results obtained show the characteristic effect of the fitting swaging analysis methodology and the swaged circle fitting design on the sealing of the pipe joint. The innovation is mainly the effect of the swaging circle connection design on the sealing of the pipe joint. With the finding in this work, it is now possible to develop or develop new tools for engineered swaging circle fitting.


Author(s):  
Xinghui Han ◽  
Qiu Jin ◽  
Lin Hua

This study aims at exploring the potentialities of cold orbital forming in forming complex sheet metal. Aiming at a complex mobile phone shell component of aluminum alloy, two technical schemes for cold orbital forming are first presented. Then, the optimized one, i.e., the more complex inner surface of mobile phone shell is arranged to be formed by the rocking punch with a complex motion, is determined by analyzing the nonuniform plastic deformation laws and punch filling behaviors. On the basis of the optimized technical scheme, the blank geometry in cold orbital forming of mobile phone shell is also optimized based on the forming status of the most difficult forming zone. The consistent finite element (FE) simulated and experimental results indicate that under the optimized technical scheme, not only the bosses in the mobile phone shell are fully formed but also the obtained flow lines are reasonable, which proves that the technical scheme presented in this study is feasible and cold orbital forming exhibits huge potentialities in forming complex sheet metal.


2019 ◽  
Vol 11 (9) ◽  
pp. 168781401987456 ◽  
Author(s):  
Dyi-Cheng Chen ◽  
Li Cheng-Yu ◽  
Yu-Yu Lai

With the advancement of technology, aiming for achieving a greater lightness and smaller size of 3C products, parts processing technology not only needs to explore the basic scientific theory of materials but also needs to discuss the process of deep drawing numerical and the plastic deformation. This study is based on the square shape of the deep drawing numerical simulation, and aluminum alloy plastic flow stress was input into the finite element method for simulation of plastic deformation in the aluminum alloy friction, mold clamping force, and frequency, as well as amplitude in the influence of forming mechanism and the drawing ratio of aluminum alloy. Finite element analysis software has the function of grid automatic rebuild, which can rebuild the broken grid in the analysis into a complete grid shape, which can avoid the divergence caused by numerical calculation in the analysis process. The greater the obtained error value, the best plastic parameters can be found.


1995 ◽  
Vol 117 (2) ◽  
pp. 479-488 ◽  
Author(s):  
D. D. Hall ◽  
I. Mudawar

The mechanical properties of age-hardenable aluminum alloy extrusions are critically dependent on the rate at which the part is cooled (quenched) after the forming operation. The present study continues the development of an intelligent spray quenching system, which selects the optimal nozzle configuration based on part geometry and composition such that the magnitude and uniformity of hardness (or yield strength) is maximized while residual stresses are minimized. The quenching of a complex-shaped part with multiple, overlapping sprays was successfully modeled using spray heat transfer correlations as boundary conditions within a finite element program. The hardness distribution of the heat-treated part was accurately predicted using the quench factor technique; that is, the metallurgical transformations that occur within the part were linked to the cooling history predicted by the finite element program. This study represents the first successful attempt at systematically predicting the mechanical properties of a quenched metallic part from knowledge of only the spray boundary conditions.


2011 ◽  
Vol 243-249 ◽  
pp. 294-297
Author(s):  
Rui Tao Zhu

Utilizing general finite element software ANSYS, the finite element computing model of the steel spatial tubular joint is built, which is used to analyze the mechanical properties under dead loads through changing its design parameters. According to the obtained and compared consequences, the different design parameters including stiffening ring thickness, cross-shaped ribbed plate thickness and stiffening ring length exert different influence on ultimate bearing capacity of the steel spatial tubular joint. Specifically, the ultimate bearing capacity under dead loads is affected by setting stiffening ring and changing cross-shaped ribbed plate thickness significantly. In contrast, if the thickness and length of stiffening ring are changed, the impact is insignificant. The results and conclusion can provide reference which is useful to optimize the design of steel spatial tubular joint in such category.


2004 ◽  
Vol 1 (1) ◽  
pp. 59 ◽  
Author(s):  
A. A.N. Aljawi

Deformation and failure of thin plates of mild steel were studied under quasi-static and dynamic impact loadings. Particular emphasis was placed on responses of simply supported circular plates subjected to centric orthogonal loadings. The latter comprised loadings due to relatively massive rigid cylindrical strikers with a hemispherical-end as well as a flat-end. The projectile motions featured variable and low impact velocities. Generally, good agreement was found between experimental results and those predicted by finite-element techniques for displacement-time curves and for force histories of the striker. It was concluded that the ABAQUS-based study (both the implicit and the explicit versions) revealed beneficial insights into the impact mechanics of plates by rigid projectiles. 


2021 ◽  
Vol 26 (3-4) ◽  
pp. 255-264
Author(s):  
E.Y. Chugunov ◽  
◽  
A.I. Pogalov ◽  
S.P. Timoshenkov ◽  
◽  
...  

In the context of increasing the electronic components integration level, growing functionality and packaging density, as well as reducing the electronics weight and size, an integrated approach to engineering calculations of parts and assemblies of modern functionally and technically complex microelectronic products is required. Of particular importance are engineering calculations and structural modeling using computer-aided engineering systems, and also assessment of structural, technological and operational factors’ impact on the products reliability and performance. This work presents an approach to engineering calculations and microelectronic products modeling based on the finite-element method providing a comprehensive account of various factors (material properties, external loading, temperature fields, and other parameters) impact on the stress-strain state, mechanical strength, thermal condition, and other characteristics of products. On the example of parts and assemblies of products of microelectronic technology, the approximation of structures was shown and computer finite-element models were developed to study various structural and technological options of products and the effects on them. Engineering calculations and modeling of parts and assemblies were performed, taking into account the impact of material properties, design parameters and external influences on the products’ characteristics. Scientific and technical recommendations for structure optimization and design and technology solutions ensuring the products resistance to diverse effects were developed. It has been shown that an integrated approach to engineering calculations and microelectronic products modeling based on the finite-element method provides for the determination of optimal solutions taking into account structural, technological, and operational factors and allows the development of products with high tactical, technical and operational characteristics.


Author(s):  
Ryan C. Heap ◽  
Ammon I. Hepworth ◽  
C. Greg Jensen

Parametric finite element analysis (FEA) models are commonly used in iterative design processes to obtain an optimum model given a set of loads, constraints, objectives, and design parameters to vary. In some instances, it is desirable for a designer to obtain some intuition about how changes in design parameters can affect the FEA solution of interest, before simply sending the model through the optimization loop. For example, designers who wish to explore the design space and understand how each variable changes the output in a visual way, looking at the whole model and not just numbers or a response surface of a single FEA node. This could be accomplished by running the FEA on the parametric model for a set of part family members, but this can be very time consuming and only gives snapshots of the model's real behavior. This paper presents a method of visualizing the FEA solution of the parametric model as design parameters are changed in real-time by approximating the FEA solution using parametric FEA modeling, surrogate modeling methods, and visualization methods. The implementation develops a parametric FEA mode that includes mesh morphing algorithms that allow the mesh to change parametrically along with the model geometry. This allows the surrogate models assigned to each individual node to use the nodal solution of multiple finite element analyses as regression points to approximate the FEA solution. The surrogate models can then be mapped to their respective geometric locations in real-time. The results of the FEA calculations are updated in real-time as the parameters of the design model change allowing real-time visualization.


2011 ◽  
Vol 188 ◽  
pp. 590-595
Author(s):  
B.J. Xiao ◽  
Cheng Yong Wang ◽  
Ying Ning Hu ◽  
Yue Xian Song

A two-dimensional orthogonal thermal-mechanical finite element model by Deform2D finite element analysis software is established in the article. By the adaptive meshing technique, not only cutting process but also the effect on the process of aluminum alloy Al6061-T6 processing as friction coefficient changing is simulated. The simulation shows that the friction coefficient has significant effect on the cutting temperature and cutting force, and the effect is nonlinear. With the increasing of the friction coefficient, the cutting temperature and cutting force will both increase. The impact the friction coefficient has on the surface residual stress is much smaller than the impact on the cutting temperature and cutting force.


Sign in / Sign up

Export Citation Format

Share Document