scholarly journals How Impact the Design of Aluminum Swaging Circle Fitting on the Sealing for Piping Systems: Analytical and Numerical Model

2021 ◽  
Author(s):  
Ahmet Atak

Installation and repair of hydraulic installations are carried out by joining the pipes in the field. Pipe connections in aviation are made in a very narrow space and field. For this reason, fitting swaging method is used to connect the fittings to the pipes with a hydraulic hand tool. The basis for developing a swaging tool is knowledge of the design parameters for the plastic deformation of the swaging circle fitting. In addition to the design parameter, pipes have to be joined in cryogenic vacuum conditions, which require sealing in such sensitive and harsh conditions. In this study, the effect of swaged circle fitting designs on tightness and strength was determined and different swaging methods were examined for its improvement. Different geometric swaged circle fittings are designed and analytical and numerical models are solved. The solution results obtained show the characteristic effect of the fitting swaging analysis methodology and the swaged circle fitting design on the sealing of the pipe joint. The innovation is mainly the effect of the swaging circle connection design on the sealing of the pipe joint. With the finding in this work, it is now possible to develop or develop new tools for engineered swaging circle fitting.

2021 ◽  
Vol 7 (1) ◽  
pp. 107-117
Author(s):  
Ahmet Atak

In various fields of engineering, the assembly and repair of hydraulic installations are accomplished by joining the pipes. In such applications, the ring swaging method is used to connect the fittings to the pipes by means of a hydraulic hand tool. The basis to develop a swaging tool relies on the knowledge of the design parameter that influence plastic deformation of the swaging ring. In addition to build control over the design parameters, it is necessary to join pipes under severe conditions such as cryogenic vacuum and constrained space which require an intact sealing. In this study, the effect of swaging ring designs on sealing and strength has been examined and different swaging methods have been investigated by finite element modeling methods. Based on the obtained results, the analysis methodology of ring swaging and the characteristic impact of swaging ring design on the sealing of pipe connection are shown. The prime novelty of the study is to report the impact of swaging ring design and geometry on sealing efficiency of the pipe connection. The results of the study open new avenues for the development of efficient tools for designing swaging rings. Doi: 10.28991/cej-2021-03091641 Full Text: PDF


Author(s):  
V. E. Perekutnev ◽  
V. V. Zotov

Upgrading of hoisting machines aims to improve their performance, to reduce risk of accidents, and to cut down operational and capital costs. One of the redesign solutions is replacement of steel cables by rubber cables. This novation can extend life of pulling members, decrease diameters of drive and guide wheels and, consequently, elements of the whole hoisting machines: rotor, reducing gear, motor. This engineering novation needs re-designing of hoisting machines; thus, the new design should be validated, in particular, strength characteristics of the machine members. This article considers a drive wheel of a hoisting machine with a pulling belt. In order to justify the potential range of design parameters with regard to safety factor, the numerical models of different-design drive wheels are developed and their operation with pulling belt (rubber cable) is simulated in the SolidWorks environment. The data on the stress state of the wheel elements are analyzed, the most loaded points are identified, and the maximal stresses on the sidewall surface and in the spokes of wheels of different designs are plotted.


COMPSTAT ◽  
1998 ◽  
pp. 383-388 ◽  
Author(s):  
A. Linka ◽  
G. Ososkov ◽  
J. Picek ◽  
P. Volf

Actuators ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 88 ◽  
Author(s):  
Salvatore Ameduri ◽  
Angela Brindisi ◽  
Monica Ciminello ◽  
Antonio Concilio ◽  
Vincenzo Quaranta ◽  
...  

The work at hand focuses on an adaptive system aimed at improving the soundproof performance of car door seals at specific regimes (cruise), without interfering with the conventional opening and closing operations. The idea addresses the necessity of increasing seal effectiveness, jeopardized by aerodynamic actions that strengthen as the speed increases, generating a growing pressure difference between the internal and the external field in the direction of opening the door, and then deteriorating the acoustic insulation. An original expansion mechanism driven by a shape memory alloy (SMA) wire was integrated within the seal cavity to reduce that effect. The smart material was activated (heated) by using the Joule effect; its compactness contributed to the realization of a highly-integrable and modular system (expanding cells). In this paper, the system development process is described together with the verification and validation activity, aimed at proving the functionality of the realized device. Starting from industrial requirements, a suitable solution was identified by considering the basic phenomenon principle and the allowable design parameters. The envisaged system was designed and its executive digital mock-up (CAD, computer-aided design) was released. Prototyping and laboratory tests showed the reliability of the developed numerical models and validated the associated predictions. Finally, the system was integrated within the reference car. To demonstrate the insulation effect, the experimental campaign was carried out in an anechoic room, achieving significant results on the concept value.


2010 ◽  
Vol 26 (3) ◽  
pp. 373-384 ◽  
Author(s):  
C.-C. Cheng ◽  
C.-Y. Lin ◽  
J.-H. Ho ◽  
C.-S. Chen ◽  
J. Shieh ◽  
...  

AbstractWe investigated the design parameters of a compact pot-like ultrasonic sensor which possesses a highly anisotropic beam pattern. As the sensor size is small due to its application constraint, the parameters are thus highly coupled to one another. We analyzed the respective effects of the parameters in the case where there is a vertical beam width reduction. The parameters investigated include resonant frequency, vibrating plate width-expanded angle, and ratio of thickness discontinuity of the vibrating plate. Numerical models developed by combining finite-element analysis and spatial Fourier transforms were adopted to predict the far-field radiating beam pattern of the various design configurations. The displacement distribution of the vibrating plate was measured using a microscopic laser Doppler vibrometer and the far-field pressure beam patterns were measured using a standard microphone in a semianechoic environment. The three configurations we used to validate the simulation model resulted in an H-V ratio of 2.67, 2.68 and 3.13, respectively which all agreed well with the numerical calculations. We found that by increasing the operating resonant frequency from 40kHz to 58kHz, the vertical far-field beam width of an ultrasonic sensor can be reduced by 31.62%. We found that the vertical beam width can be significantly reduced when the ratio of the thickness discontinuity of the vibrating plate decreases from 1 to 0.4 and is incorporated with its optimal width-expanded angle of the vibrating plate. It appears that an ultrasonic sensor with this type of anisotropic beam pattern can be ideally adopted for today's automotive applications.


2017 ◽  
Vol 15 (02) ◽  
pp. 1850001 ◽  
Author(s):  
George Markou ◽  
Mohammad AlHamaydeh

This paper presents the numerical investigation of nine Glass Fiber-Reinforced Polymer (GFRP) concrete deep beams through the use of numerically-efficient 20-noded hexahedral elements. Cracking is taken into account by means of the smeared crack approach and the bars are simulated as embedded rod elements. The developed numerical models are validated against published experimental results. The validation beams spanned a practical range of varying design parameters; namely, shear span-to-depth ratio, concrete specified compressive strength and flexural reinforcement ratio. The motivation for this research is to accurately yet efficiently capture the mechanical behavior of the GFRP-reinforced concrete deep beams. The presented numerical investigation demonstrated close correlations of the force–deformation relationships that are numerically predicted and their experimental counterparts. Moreover, the numerically predicted modes of failure are also found to be conformal to those observed experimentally. The proposed modeling approach that overcame previous computational limitations has further demonstrated its capability to accurately model larger and deeper beams in a computationally efficient manner. The validated modeling technique can then be efficiently used to perform extensive parametric investigations related to behavior of this type of structural members. The modeling method presented in this work paves the way for further parametric investigations of the mechanical behavior of GFRP-reinforced deep beams without shear reinforcement that will serve as the base for proposing new design guidelines. As a deeper understanding of the behavior and the effect of the design parameters is attained, more economical and safer designs will emerge.


2019 ◽  
pp. 20-27
Author(s):  
Juan Pablo Razón-González ◽  
Dennise Ivonne Gallardo-Alvarez ◽  
José Miguel García-Guzmán ◽  
Israel Durán Belman

The current requirements of the industry present challenges that must faced daily in the different productive sectors. The use of the cutting-edge technology and the efficient handling of large volumes of information allow the development of new computational tools that improve accuracy and optimize calculation’s times in pipe design. In this work the application is presented of the Piping Systems Analysis Program (PSAP), same that was developed as a graphical interface in the computer language MATLAB®; this computational application determines the size of the commercial pipe based on the pressure difference, elevation, water temperature and volume flow as critical design parameters. The algorithm of solution uses skills of Big Data for the precise handling of large volumes of information, getting accurate results at reduced times without compromising the reliability of pipe systems; this way optimizes the design process compared to traditional analytical methods.


2003 ◽  
Author(s):  
J. Guillou ◽  
L. Paulhiac

Several vibration-induced failures at the root of small bore piping systems occurred in French nuclear power plants in past years. The evaluation of the failure risk of the small bore pipes requires a fair estimation of the bending stress under operating conditions. As the use of strain gauges is too time-consuming in the environmental conditions of nuclear power plants, on-site acceleration measurements combined with numerical models are easier to handle. It still requires yet a large amount of updating work to estimate the stress in multi-span pipes with elbows and supports. The aim of the present study is to propose an alternate approach using two accelerometers to measure the local nozzle deflection, and an analytical expression of the bending stiffness of the nozzle on the main pipe. A first formulation is based on a static deformation assumption, thus allowing the use of a simple analog converter to get an estimation of the RMS value of the bending stress. To get more accurate results, a second method is based on an Euler Bernoulli deformation assumption: a spectral analyzer is then required to get an estimation of the spectrum of the bending stress. A better estimation of its RMS value is then obtained. An experimental validation of the methods based on strain gauges has been successfully performed.


Response modification factor (R) performs as one of the main seismic design parameters of new structures during earthquake and is considered as significant parameter of nonlinear equivalent static analysis which is a widely used method to evaluate the seismic response of a structure. A review of the literature illustrates that although various numerical studies have investigated the effect of viscous dampers on the response modification factor (R), lack of experimental study has been conducted to verify the numerical models. This study evaluates the response modification factor of steel frame with and without viscous damper. Experimental and numerical analysis have been conducted in the present research. It is found that results from finite element analysis agree well with the experimental results. Besides, the use of damper increases significantly the response modification factors of steel structures, e.g., the factor of structures with dampers are approximate 32% higher than the structures without dampers. The determined response modification factors for the different structures used in this study can be applied to conduct equivalent static analysis of buildings as an initial design stage.


Sign in / Sign up

Export Citation Format

Share Document