scholarly journals Trend Analysis and Variability of Air Temperature and Rainfall in Regional River Basins

2021 ◽  
Vol 7 (5) ◽  
pp. 816-826
Author(s):  
Benjamin Nnamdi Ekwueme ◽  
Jonah Chukwuemeka Agunwamba

Global warming and climate variability are emerging as the foremost environmental problems in the 21st century, especially in developing countries. Full knowledge of key climate change variables is crucial in managing water resources in river basins. This study examines the variability of air temperature and rainfall in the five states of South-Eastern region of Nigeria, using the trend analysis approach. For this purpose, temporal trends in annual rainfall and temperature were detected using non-parametric Mann-Kendall test at 5% significance level. The time series rainfall and temperature data for the period 1922-2008 were analyzed statistically for each state separately. The results of Mann Kendall test showed that there is trend in rainfall in all the capital cities in South-East except Owerri and Awka. It is also observed that the trend of rainfall is decreasing for all the study areas in South-East with the lowest trend rate of -0.1153 mm rainfall occurring in Umuahia. In the case of air temperature, it is observed that the trend is increasing for all the study areas in South-East with the highest trend rate of 0.04698 oC/year occurring in Enugu. These findings provide valuable information for assessing the influence of changes on air temperature and rainfall on water resources and references for water management in the South-Eastern river basin of Nigeria. It also proved that Mann-Kendall technique is an effective tool in analyzing temperature and rainfall trends in a regional watershed. Doi: 10.28991/cej-2021-03091692 Full Text: PDF

2021 ◽  
Vol 17 (1) ◽  
pp. 121-125
Author(s):  
Virendra N. Barai ◽  
Rohini M. Kalunge

This article aims to review studies pertaining to trends in rainfall, rainy days over India. Non-parametric tests such as Sen’s Slope were used as estimator of trend magnitude which was supported by Mann-Kendall test. The findings of various studies indicate variance with respect to the rainfall rate, which contributes to an uncertain picture of the rainfall trend. In the study of monsoon of different locations in India some places showed increasing trends however, there is signifying decrease in trend all over India. It was also mentioned that analysis can vary from for a location if done using different source or types of collection of data. Spatial units range from station results and sub-division to sub-basin/river basins for trend analysis. The outcomes of the different experiments vary and a simple and reliable picture of the trend of rainfall has not appeared. While there can be a non-zero slope value for the multiple units (sub-basins or sub-divisions), few values are statistically important. In a basin-wise trend analysis report, some basins had a declining annual rainfall trend; at a 95 per cent confidence stage, only one basin showed a strong decreasing trend. Out of the six basins exhibiting a rising trend saw a major positive trend in one basin. Many of the basins have the same pattern direction on the annual and seasonal scale for rainfall and rainy days.


2011 ◽  
Vol 4 (1) ◽  
pp. 134 ◽  
Author(s):  
Francisco de Assis Salviano de Sousa ◽  
Heliene Ferreira de Morais ◽  
Vicente De Paulo Rodrigues da

A expansão de cidades produz diversos impactos no ambiente urbano causado por atividades antropogênicas. Este estudo avaliou o efeito da urbanização no clima da cidade de Campina Grande com base em dados mensais de temperatura média do ar, precipitação pluvial, umidade relativa do ar e insolação no período de 1963 a 2004. O método de desvios cumulativos foi utilizado para detectar mudanças abruptas nas séries temporais. Dois períodos de estudo foram estabelecidos: pré-urbano intenso PRÉ-UI (1963-1985) e pós-urbano intenso PÓS-UI (1986-2004). Para cada variável climática foram obtidas estatísticas como: médias, desvio-padrão, coeficiente de variação (CV) e autocorrelação serial. Foram avaliadas as diferenças entre as médias dos períodos PRÉ-UI e PÓS-UI através do teste de t-Student. Também foi usado o teste Mann-Kendall para avaliar as tendências das séries temporais no período total estudado. A temperatura média do ar apresentou tendência crescente, enquanto umidade relativa apresentou tendência decrescente, todas estatisticamente significativas ao nível de 1% através do teste de Mann-Kendall. A série de precipitação pluvial não apresentou tendência estatisticamente significativa. A variabilidade da precipitação pluvial intra-anual, expressa pelo CV, é muito alta e variou de 30 a 89% durante o período analisado. A variabilidade anual da precipitação pluvial é cerca de 30% da variabilidade intra-anual. A temperatura do ar demonstrou persistência natural através dos valores do coeficiente de autocorrelação, para os primeiros lags.Palavras-chave: Clima urbano, Mann-Kendall e variáveis climáticas  Influence of Urbanization on Climate of the Campina Grande City–PB ABSTRACTThe expansion of cities produces different impacts in the urban environment caused by anthropogenic activities. This study evaluated the effect of urbanization on climate of the Campina Grande city based on monthly data of average air temperature, rainfall, relative humidity and sunshine in the period 1963 to 2004. The cumulative deviation method was used to detect abrupt changes in time series. Two study periods were established: intense urban pre-PRE-UI (1963-1985) and after intense urban POST-IU (1986-2004). For each climate variable, statistics were obtained as averages, standard deviation, coefficient of variation (CV) and serial autocorrelation. We evaluated the differences between the mean pre-and post-IU through the IU Student t test. It was also used Mann-Kendall test to assess trends in time series over the entire period studied. The average air temperature showed an ascending trend, while relative humidity showed a declining trend, all statistically significant at 1% through the Mann-Kendall test. The series of rainfall did not show a statistically significant trend. The variability of intra-annual precipitation, expressed as CV, is very high and ranged from 30 to 89% during the period analyzed. The variability of annual rainfall is about 30% of intra-annual variability.The air temperature showed persistence through the natural values the autocorrelation coefficient for the first lags.  Keywords: Urban climate, Mann-Kendall and climatic variables


2019 ◽  
Vol 34 (02) ◽  
Author(s):  
Mohit Nain ◽  
B. K. Hooda

Study on rainfall pattern of a region over a number of years is very useful for crop planning and irrigations scheduling. The present study deals with the probability and trend analysis of monthly rainfall in selected rain gauge stations scattered over the entire state of Haryana. Probabilities for drought, normal and abnormal events for monthly rainfall have been worked out using monthly rainfall data for 42 years (1970-2011), covering 27 rain gauge stations in the state of Haryana. Analysis indicated that drought months are more probable than normal months while normal months are more probable than abnormal months. The monotonic trend direction and magnitude of change in rainfall over time have been examined using the Mann-Kendall test and Sen’s slope estimator tests. Using the Mann-Kendall test and Sen’s slope estimator, the significant decrease in annual rainfall was noticed at Ballabgarh and Thanesar, While in monsoon rainfall, a significant decrease was noticed at Thanesar and Narnaul. But Sirsa is the only district which shows a significant increase in annual and monsoon rainfall. In probability analysis the highest per cent of normal, draughts and abnormal months was observed for Ambala, Hassanpur and Dujana respectively.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 665
Author(s):  
Chanchai Petpongpan ◽  
Chaiwat Ekkawatpanit ◽  
Supattra Visessri ◽  
Duangrudee Kositgittiwong

Due to a continuous increase in global temperature, the climate has been changing without sign of alleviation. An increase in the air temperature has caused changes in the hydrologic cycle, which have been followed by several emergencies of natural extreme events around the world. Thailand is one of the countries that has incurred a huge loss in assets and lives from the extreme flood and drought events, especially in the northern part. Therefore, the purpose of this study was to assess the hydrological regime in the Yom and Nan River basins, affected by climate change as well as the possibility of extreme floods and droughts. The hydrological processes of the study areas were generated via the physically-based hydrological model, namely the Soil and Water Assessment Tool (SWAT) model. The projected climate conditions were dependent on the outputs of the Global Climate Models (GCMs) as the Representative Concentration Pathways (RCPs) 2.6 and 8.5 between 2021 and 2095. Results show that the average air temperature, annual rainfall, and annual runoff will be significantly increased in the intermediate future (2046–2070) onwards, especially under RCP 8.5. According to the Flow Duration Curve and return period of peak discharge, there are fluctuating trends in the occurrence of extreme floods and drought events under RCP 2.6 from the future (2021–2045) to the far future (2071–2095). However, under RCP 8.5, the extreme flood and drought events seem to be more severe. The probability of extreme flood remains constant from the reference period to the near future, then rises dramatically in the intermediate and the far future. The intensity of extreme droughts will be increased in the near future and decreased in the intermediate future due to high annual rainfall, then tending to have an upward trend in the far future.


Atmosphere ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 332 ◽  
Author(s):  
Yilinuer Alifujiang ◽  
Jilili Abuduwaili ◽  
Balati Maihemuti ◽  
Bilal Emin ◽  
Michael Groll

The analysis of various characteristics and trends of precipitation is an essential task to improve the utilization of water resources. Lake Issyk-Kul basin is an upper alpine catchment, which is more susceptible to the effects of climate variability, and identifying rainfall variations has vital importance for water resource planning and management in the lake basin. The well-known approaches linear regression, Şen’s slope, Spearman’s rho, and Mann-Kendall trend tests are applied frequently to try to identify trend variations, especially in rainfall, in most literature around the world. Recently, a newly developed method of Şen-innovative trend analysis (ITA) provides some advantages of visual-graphical illustrations and the identification of trends, which is one of the main focuses in this article. This study obtained the monthly precipitation data (between 1951 and 2012) from three meteorological stations (Balykchy, Cholpon-Ata, and Kyzyl-Suu) surrounding the Lake Issyk-Kul, and investigated the trends of precipitation variability by applying the ITA method. For comparison purposes, the traditional Mann–Kendall trend test also used the same time series. The main results of this study include the following. (1) According to the Mann-Kendall trend test, the precipitation of all months at the Balykchy station showed a positive trend (except in January (Zc = −0.784) and July (Zc = 0.079)). At the Cholpon-Ata and Kyzyl-Suu stations, monthly precipitation (with the same month of multiple years averaged) indicated a decreasing trend in January, June, August, and November. At the monthly scale, significant increasing trends (Zc > Z0.10 = 1.645) were detected in February and October for three stations. (2) The ITA method indicated that the rising trends were seen in 16 out of 36 months at the three stations, while six months showed decreasing patterns for “high” monthly precipitation. According to the “low” monthly precipitations, 14 months had an increasing trend, and four months showed a decreasing trend. Through the application of the ITA method (January, March, and August at Balykchy; December at Cholpon-Ata; and July and December at Kyzyl-Suu), there were some significant increasing trends, but the Mann-Kendall test found no significant trends. The significant trend occupies 19.4% in the Mann-Kendall test and 36.1% in the ITA method, which indicates that the ITA method displays more positive significant trends than Mann–Kendall Zc. (3) Compared with the classical Mann-Kendall trend results, the ITA method has some advantages. This approach allows more detailed interpretations about trend detection, which has benefits for identifying hidden variation trends of precipitation and the graphical illustration of the trend variability of extreme events, such as “high” and “low” values of monthly precipitation. In contrast, these cannot be discovered by applying traditional methods.


Water ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1782 ◽  
Author(s):  
Maochuan Hu ◽  
Takahiro Sayama ◽  
Sophal TRY ◽  
Kaoru Takara ◽  
Kenji Tanaka

Understanding long-term trends in hydrological and climatic variables is of high significance for sustainable water resource management. This study focuses on the annual and seasonal trends in precipitation, temperature, potential evapotranspiration, and river discharge over the Kamo River basin from the hydrological years 1962 to 2017. Homogeneity was examined by Levene’s test. The Mann–Kendall and a modified Mann–Kendall test as well as Sen’s slope estimator were used to analyze significant trends (p < 0.05) in a time series with and without serial correlation and their magnitudes. The results indicate that potential evapotranspiration calculated by the Penman–Monteith equation was highly related to temperature, and significantly increased in the annual and summer series. Annual river discharge significantly decreased by 0.09 m3/s. No significant trend was found at the seasonal scale. Annual, autumn, and winter precipitation at Kumogahata station significantly increased, while no significant trend was found at Kyoto station. Precipitation was least affected by the modified Mann–Kendall test. Other variables were relatively highly autocorrelated. The modified Mann–Kendall test with a full autocorrelation structure improved the accuracy of trend analysis. Furthermore, this study provides information for decision makers to take proactive measures for sustainable water management.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Benfu Zhao ◽  
Jianhua Xu ◽  
Zhongsheng Chen ◽  
Ling Bai ◽  
Peng Li

The temperature data from 3 meteorological stations (Kashi, Ruoqiang, and Hotan) in the South of Tarim River Basin (STRB) during 1964–2011 were analyzed by Mann-Kendall test and correlation analysis. The results from Mann-Kendall test show that the surface temperature (ST), 850 hPa temperature (T850), and 700 hPa temperature (T700) exhibited upward trends, while 300 hPa temperature (T300) revealed a downward trend. On the whole, the change rate of ST, T850, T700, and T300 was 0.26~0.46°C/10a, 0.15~0.40°C/10a, 0.03~0.10°C/10a, and −0.38~−0.13°C/10a, respectively. For the periods, ST and T850 declined during 1964–1997 and then rose during 1998–2011. T700 declined during 1964–2005 and then rose during 2006–2011, while T300 rose from 1964 to 1970s and then declined. The results from correlation analysis show that T850 and T700 positively correlated with ST (P<0.01) at the all three stations and there was a negative correlation between T300 and ST at Hotan (P<0.1), while the correlation is not significant at Kashi and Ruoqiang. The results indicate that there were gradient differences in the response of upper-air temperature (UT) to ST change.


Sign in / Sign up

Export Citation Format

Share Document