Исследование градуировочной характеристики турбинных преобразователей расхода жидкости типа MVTM

Author(s):  
Petr S. Gulyaev ◽  
Alexander N. Teplykh ◽  
Andrey Y. Dyachenko

Most of the failures of turbine flow converters (TFC) used in the Russian system of main oil pipelines and oil product pipelines are caused by abrupt changes in the viscosity of the transported medium. In studies related to determination of the influence of the rheological properties of the pumped oil on the metrological characteristics of TFC that have a calibration curve in the form of a piecewise approximation without taking into account the correlation of TFC rotor speed with the viscosity of the pumped liquid in the flow rate subrange, the instability of the metrological characteristics in the operating range is observed. Taking into account the tendency to increase the volume of production and pumping of high-viscosity oils it can be assumed that the irregularity of the metrological characteristics of TFC, expressed in the change in the conversion factor will remain, which will negatively affect the reliability of accounting operations using oil quality control system (OQCS). Accordingly there is a need to maintain the error of TFC within the set limits in the subranges and throughout the entire range of flow rates. According to the results of the study performed by the authors it was confirmed that for the TFC of MVTM type the use of the calibration curve in the form of a piecewise-parabolic approximation with the dependence of the conversion factor on the ratio of TFC pulse frequency to the oil viscosity makes it possible to minimize the effect of changes in the parameters of the pumped medium on the measurement accuracy and as a consequence to stabilize the metrological characteristics of TFC in the recalibration interval, eliminate the costs of performing out-of-turn verifications, increase the accuracy and metrological reliability of the OQCS. Большинство отказов турбинных преобразователей расхода (ТПР), используемых в российской системе магистральных нефтепроводов и нефтепродуктопроводов, обусловлено резкими изменениями вязкости транспортируемой среды. В исследованиях по определению влияния реологических свойств перекачиваемой нефти на метрологические характеристики ТПР, имеющих градуировочную характеристику в виде кусочно-линейной аппроксимации без учета корреляции частоты вращения ротора ТПР с вязкостью перекачиваемой жидкости в поддиапазоне расхода, отмечается нестабильность метрологических характеристик в рабочем диапазоне. Учитывая тенденцию увеличения объема добычи и перекачки высоковязких нефтей, можно предположить, что непостоянность метрологических характеристик ТПР, выражаемая в изменении коэффициента преобразования, сохранится, что негативно скажется на достоверности учетных операций с применением систем измерений количества и показателей качества нефти (СИКН). Соответственно, возникает потребность в поддержании погрешности ТПР в установленных пределах в поддиапазонах и во всем диапазоне расходов. По результатам проведенного авторами исследования подтверждено, что для ТПР типа MVTM использование градуировочной характеристики в виде кусочно-параболической аппроксимации с зависимостью коэффициента преобразования от отношения частоты импульсов ТПР к вязкости нефти позволяет минимизировать влияние изменений параметров перекачиваемой среды на точность измерений и, как следствие, стабилизировать метрологические характеристики ТПР в межповерочном интервале, исключить затраты на выполнение внеочередных поверок, повысить точность и метрологическую надежность СИКН.

1955 ◽  
Vol 18 (4) ◽  
pp. 374-378
Author(s):  
Mogens Sprechler

SUMMARY Since 1949 about 10,000 urinary corticoid analyses have been performed routinely in our laboratory. The method used for this purpose was described in 1950 (Sprechler). We determine the corticoids which can be extracted from the urine with chloroform immediately after acidification to pH 1. The extract is washed with sodium hydroxide and water, a Girard separation is performed, and finally the reducing power of the ketonic fraction is measured by means of the phosphomolybdic acid reagent reaction. During the last few years two other chemical reactions have been used for comparison: The formaldehyde and the Porter-Silber method. After a thorough examination of the above methods a standard technique was followed. In the formaldehyde method a microdiffusion in a Conway unit was used instead of distillation of the formaldehyde following the oxidation with periodic acid. The calibration curve was corrected for loss of material by taking the standard doses of DOC through all the procedures of the method. A micromodification of the Porter-Silber method was chosen. Furthermore attempts were made to determine how specific the chromatographic procedure is in the determination of steroids in urinary extracts. For this purpose the Florisil column was used, and the technique described by Nelson & Samuels was followed. Finally we have investigated the glucuronide-bound corticoids in urine in a smaller series of objects.


2020 ◽  
Vol 65 (7-8) ◽  
pp. 37-41
Author(s):  
E. N. Semenova ◽  
S. I. Kuleshova ◽  
E. I. Sakanyan

A method for the quantitative determination of streptomycin sulfate in medicines by the turbidimetric method has been developedand validated. Based on the results of the experiments, it was found that the metrological characteristics of such validation parameters of the method as linearity, precision, and correctness do not exceed the validation criteria. Linearity was noted in the range of streptomycin concentrations from 3.75 to 8.43 μg/ml. The results of validation tests of the method for the quantitative determination of streptomycin indicate the prospects and feasibility of introducing the turbidimetric method into the domestic system for standardization and quality assessment of aminoglycoside antibiotics.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 930
Author(s):  
Fahimeh Hadavimoghaddam ◽  
Mehdi Ostadhassan ◽  
Ehsan Heidaryan ◽  
Mohammad Ali Sadri ◽  
Inna Chapanova ◽  
...  

Dead oil viscosity is a critical parameter to solve numerous reservoir engineering problems and one of the most unreliable properties to predict with classical black oil correlations. Determination of dead oil viscosity by experiments is expensive and time-consuming, which means developing an accurate and quick prediction model is required. This paper implements six machine learning models: random forest (RF), lightgbm, XGBoost, multilayer perceptron (MLP) neural network, stochastic real-valued (SRV) and SuperLearner to predict dead oil viscosity. More than 2000 pressure–volume–temperature (PVT) data were used for developing and testing these models. A huge range of viscosity data were used, from light intermediate to heavy oil. In this study, we give insight into the performance of different functional forms that have been used in the literature to formulate dead oil viscosity. The results show that the functional form f(γAPI,T), has the best performance, and additional correlating parameters might be unnecessary. Furthermore, SuperLearner outperformed other machine learning (ML) algorithms as well as common correlations that are based on the metric analysis. The SuperLearner model can potentially replace the empirical models for viscosity predictions on a wide range of viscosities (any oil type). Ultimately, the proposed model is capable of simulating the true physical trend of the dead oil viscosity with variations of oil API gravity, temperature and shear rate.


As an introduction to the study of reactions contingent on ionization in flames, an experimental measurement has been made of the collision frequency of electrons with molecules in coal-gas/air flames, containing added alkali metal salt. This quantity is an important parameter in the expression relating the electron content of a flame with the attenuation of centimetric radio waves by it. This attenuation has been chosen as a convenient method of investigating flame ionization. The form of the results obtained agree well with the predictions of theory, a uniform difference of about 20 % between measured collision frequency and that calculated on a very simple gas kinetic hypothesis being obtained. A suitable conversion factor has been evolved for proceeding from attenuation of 3 cm. waves to electron concentration/cm. 3 .


1990 ◽  
Vol 5 (3) ◽  
pp. 121-124 ◽  
Author(s):  
David J. Devlin ◽  
Kamal E. Amin

AbstractThe relative intensities ratios for the determination of the relative amounts of alpha and beta phases in silicon nitride and the relative amounts of delta yttrium disilicate (Y2Si2O7) and nitrogen apatite [Y5(SiO4)3N] are reported. These constants were determined using an iterative method applicable when the pure phases are not easily prepared. In addition, a calibration curve was obtained for the quantitative measurement of free silicon in silicon nitride over the range 0 to 0.3% by weight of Si.


2005 ◽  
Vol 128 (2) ◽  
pp. 203-209 ◽  
Author(s):  
L. Zhu ◽  
Y. Zheng ◽  
C. H. von Kerczek ◽  
L. D. T. Topoleski ◽  
R. W. Flower

Indocyanine green (ICG) dye angiography has been used by ophthalmologists for routine examination of the choroidal vasculature in human eyes for more than 20years. In this study, a new approach is developed to extract information from ICG dye angiograms about blood velocity distribution in the choriocapillaris and its feeding blood vessels. ICG dye fluorescence intensity rise and decay curves are constructed for each pixel location in each image of the choriocapillaris in an ICG angiogram. It is shown that at each instant of time the magnitude of the local instantaneous dye velocity in the choriocapillaris is proportional to both the slope of the ICG dye fluorescence intensity curve and the dye concentration. This approach leads to determination of the absolute value of blood velocity in the choriocapillaris, assuming an appropriate scaling, or conversion factor can be determined. It also enables comparison of velocities in different regions of the choriocapillaris, since the conversion factor is independent of the vessel location. The computer algorithm developed in this study can be used in clinical applications for diagnostic purposes and for assessment of the efficacy of laser therapy in human eyes.


2021 ◽  
Author(s):  
Xueqing Tang ◽  
Ruifeng Wang ◽  
Zhongliang Cheng ◽  
Hui Lu

Abstract Halfaya field in Iraq contains multiple vertically stacked oil and gas accumulations. The major oil horizons at depth of over 10,000 ft are under primary development. The main technical challenges include downdip heavy oil wells (as low as 14.56 °API) became watered-out and ceased flow due to depleted formation pressure. Heavy crude, with surface viscosities of above 10,000 cp, was too viscous to lift inefficiently. The operator applied high-pressure rich-gas/condensate to re-pressurize the dead wells and resumed production. The technical highlights are below: Laboratory studies confirmed that after condensate (45-52ºAPI) mixed with heavy oil, blended oil viscosity can cut by up to 90%; foamy oil formed to ease its flow to the surface during huff-n-puff process.In-situ gas/condensate injection and gas/condensate-lift can be applied in oil wells penetrating both upper high-pressure rich-gas/condensate zones and lower oil zones. High-pressure gas/condensate injected the oil zone, soaked, and then oil flowed from the annulus to allow large-volume well stream flow with minimal pressure drop. Gas/condensate from upper zones can lift the well stream, without additional artificial lift installation.Injection pressure and gas/condensate rate were optimized through optimal perforation interval and shot density to develop more condensate, e.g. initial condensate rate of 1,000 BOPD, for dilution of heavy oil.For multilateral wells, with several drain holes placed toward the bottom of producing interval, operating under gravity drainage or water coning, if longer injection and soaking process (e.g., 2 to 4 weeks), is adopted to broaden the diluted zone in heavy oil horizon, then additional recovery under better gravity-stabilized vertical (downward) drive and limited water coning can be achieved. Field data illustrate that this process can revive the dead wells, well production achieved approximately 3,000 BOPD under flowing wellhead pressure of 800 to 900 psig, with oil gain of over 3-fold compared with previous oil rate; water cut reduction from 30% to zero; better blended oil quality handled to medium crude; and saving artificial-lift cost. This process may be widely applied in the similar hydrocarbon reservoirs as a cost-effective technology in Middle East.


2021 ◽  
Author(s):  
S. Mindjou ◽  
F. Brahmi ◽  
W. Belkhiri ◽  
N. Adjeroud ◽  
L. Benali ◽  
...  

Cucurbita species are delicious, nutritious, and delightful products. Cucurbita seeds remain in large quantities as a waste product that could be valorized since they are excellent sources of oil. The aim of this study was to compare the seed oil of two Cucurbita species (Cucurbita pepo and Cucurbita moschata) harvested in Bejaia (Algeria). The oil quality was evaluated by the determination of some physicochemical parameters, and the content of phenolic compounds. The antiradical capacity of the antioxidants present in the oils was also assessed using two methods. The oil yield was 42.85% and 40.47% from the seeds of Cucurbita pepo and Cucurbita moschata, respectively. The determined physicochemical parameters were close to those defined by the international standards. The phenolic contents of the methanolic extracts of both oils were 5.53 and 4.45 mg GAE/100 g for Cucurbita moschata and Cucurbita pepo, respectively. The best anti-DPPH power was attributed to the oil of Cucurbita moschata (44.7%), while the methanolic extract of the seed oil of Cucurbita pepo showed the highest percentage (41.02%) of the ABTS•+ radical inhibition. By this study we confirmed that the Cucurbita seeds oil are highly nutritious and offer some medicinal benefits.


Sign in / Sign up

Export Citation Format

Share Document