Diatoms and aquatic palynomorphs in the Barents sea sediments: main distribution patterns and use in palaeoceanological studies

2021 ◽  
pp. 64-95
Author(s):  
Ye.I. Polyakova ◽  
◽  
E.A. Novichkova ◽  
E.A. Agafonova ◽  
◽  
...  

The Chapter deals with the uniqueness of the Barents Sea and adjacent sea areas from the viewpoint of the main groups of phytoplankton (diatom algae and dinoflagellate) development and their reflection in tanatocenoses of bottom sediments. Special attention is paid to the distribution of microfossils in surface waters as an indicator of the modern sea ice and hydrological signal. A distinctive feature of the Barents Sea tanatocenoses is the frequency of re-deposited Paleogene and Cretaceous forms of diatoms and dinocysts. Despite all the difficulties in finding microfossils in bottom sediments, data were obtained on characteristic associations mainly related to the redistribution of relatively warm North Atlantic waters. The issues of microfossils in cores and boreholes located on the Barents Sea shelf and continental slope are considered and the most extensive material on changes in sedimentation conditions in the Pleistocene and Holocene is generalized.

Ocean Science ◽  
2012 ◽  
Vol 8 (6) ◽  
pp. 971-982 ◽  
Author(s):  
V. N. Stepanov ◽  
H. Zuo ◽  
K. Haines

Abstract. An analysis of observational data in the Barents Sea along a meridian at 33°30' E between 70°30' and 72°30' N has reported a negative correlation between El Niño/La Niña Southern Oscillation (ENSO) events and water temperature in the top 200 m: the temperature drops about 0.5 °C during warm ENSO events while during cold ENSO events the top 200 m layer of the Barents Sea is warmer. Results from 1 and 1/4-degree global NEMO models show a similar response for the whole Barents Sea. During the strong warm ENSO event in 1997–1998 an anomalous anticyclonic atmospheric circulation over the Barents Sea enhances heat loses, as well as substantially influencing the Barents Sea inflow from the North Atlantic, via changes in ocean currents. Under normal conditions along the Scandinavian peninsula there is a warm current entering the Barents Sea from the North Atlantic, however after the 1997–1998 event this current is weakened. During 1997–1998 the model annual mean temperature in the Barents Sea is decreased by about 0.8 °C, also resulting in a higher sea ice volume. In contrast during the cold ENSO events in 1999–2000 and 2007–2008, the model shows a lower sea ice volume, and higher annual mean temperatures in the upper layer of the Barents Sea of about 0.7 °C. An analysis of model data shows that the strength of the Atlantic inflow in the Barents Sea is the main cause of heat content variability, and is forced by changing pressure and winds in the North Atlantic. However, surface heat-exchange with the atmosphere provides the means by which the Barents sea heat budget relaxes to normal in the subsequent year after the ENSO events.


2014 ◽  
Vol 27 (23) ◽  
pp. 8884-8901 ◽  
Author(s):  
Takuya Nakanowatari ◽  
Kazutoshi Sato ◽  
Jun Inoue

Abstract Predictability of sea ice concentrations (SICs) in the Barents Sea in early winter (November–December) is studied using canonical correlation analysis with atmospheric and ocean anomalies from the NCEP Climate Forecast System Reanalysis (CFSR) data. It is found that the highest prediction skill for a single-predictor model is obtained from the 13-month lead subsurface temperature at 200-m depth (T200) and the in-phase meridional surface wind (Vsfc). T200 skillfully predicts SIC variability in 35% of the Barents Sea, mainly in the eastern side. The T200 for negative sea ice anomalies exhibits warm anomalies in the subsurface ocean temperature downstream of the Norwegian Atlantic Slope Current (NwASC) on a decadal time scale. The diagnostic analysis of NCEP CFSR data suggests that the subsurface temperature anomaly stored below the thermocline during summer reemerges in late autumn by atmospheric cooling and affects the sea ice. The subsurface temperature anomaly of the NwASC is advected from the North Atlantic subpolar gyre over ~3 years. Also, Vsfc skillfully predicts SIC variability in 32% of the Barents Sea, mainly in the western side. The Vsfc for the negative sea ice anomalies exhibits southerly wind anomalies; Vsfc is related to the large-scale atmospheric circulation patterns from the subtropical North Atlantic to the Eurasian continent. This study suggests that both atmospheric and oceanic remote effects have a potential impact on the forecasting accuracy of SIC.


2021 ◽  
Author(s):  
YiBo Du ◽  
Jie Zhang ◽  
Siwen Zhao ◽  
Zhiheng Chen

Abstract The frequency of extreme drought events in northeastern China (NEC) has increased since the 2000s, and such a decadal anomalous trend may lead to significant stress on agriculture and economic development. The correlation between Arctic sea ice loss in spring and extreme summer droughts over NEC was investigated. The results show that the loss of sea ice over the Barents Sea in spring is associated with extreme droughts and positive height anomalies over NEC in summer. The physical processes include two pathways. First, Arctic ice loss from the Barents Sea to the Kara Sea results in reducing baroclinicity over the ice loss region but increasing baroclinicity over the ice melting region, which is favorable to the wave ridge over northern Europe and negative-phase Summer North Atlantic Oscillation (SNAO). One wave train originates from negative-phase SNAO over North Atlantic–Europe and spreads to central Europe, central Asia, and NEC. Second, another wave motion flux originates from the Barents–Kara Sea propagating eastward, and then disperses southward to NEC. Both wave trains lead to anomalous anticyclonic circulation and westward subtropical high, which favors descending motion and less water vapor flux, thereby contributing to extreme drought.


2019 ◽  
Vol 65 (1) ◽  
pp. 5-14
Author(s):  
N. I. Glok ◽  
G. V. Alekseev ◽  
A. E. Vyazilova

Earlier, the authors established a close relationship between the temperature of water coming from the North Atlantic and the sea ice extent (SIE) in the Barents Sea, which accounts for up to 75 % of the inter-annual variability of the monthly SIE from January to June. In turn, temperature variations of the incoming Atlantic water are affected from anomalies of sea surface temperature (SST) in the low latitudes of the North Atlantic. These dependences served as the basis for the development of a forecast method. The empirical orthogonal functions decomposition of the SIE set from January to June for 1979–2014 was used. The main component of decomposition reflects 83 % of the inter-annual variability of SIE from January to June. Regression model of forecast is based on the relation of the main component with SST anomalies taking into account the delay. Comparison of prognostic and actual values of the climatic component for each of the 6 months showed the correctness of forecasts with a lead time of 27 to 32 months is 83 %, and for the prediction of the initial values of SIE 79 %. Appealing to the second predictor — SST anomalies in the Norwegian Sea allowed to improve the quality of the forecast of the observed values of SIE. At the same time, the forecast advance time was reduced to 9–14 months.


2012 ◽  
Vol 9 (3) ◽  
pp. 2121-2151
Author(s):  
V. N. Stepanov ◽  
H. Zuo ◽  
K. Haines

Abstract. An analysis of observational data in the Barents Sea along a meridian at 33°30´ E between 70°30´ and 72°30´ N has reported a negative correlation between El Niño/La Niña-Southern Oscillation (ENSO) events and water temperature in the top 200 m: the temperature drops about 0.5 °C during warm ENSO events while during cold ENSO events the top 200 m layer of the Barents Sea is warmer. Results from 1 and 1/4-degree global NEMO models show a similar response for the whole Barents Sea. During the strong warm ENSO event in 1997–1998 an anticyclonic atmospheric circulation is settled over the Barents Sea instead of a usual cyclonic circulation. This change enhances heat loses in the Barents Sea, as well as substantially influencing the Barents Sea inflow from the North Atlantic, via changes in ocean currents. Under normal conditions along the Scandinavian peninsula there is a warm current entering the Barents sea from the North Atlantic, however after the 1997–1998 event this current is weakened. During 1997–1998 the model annual mean temperature in the Barents Sea is decreased by about 0.8 °C, also resulting in a higher sea ice volume. In contrast during the cold ENSO events in 1999–2000 and 2007–2008 the model shows a lower sea ice volume, and higher annual mean temperatures in the upper layer of the Barents Sea of about 0.7 °C. An analysis of model data shows that the Barents Sea inflow is the main source for the variability of Barents Sea heat content, and is forced by changing pressure and winds in the North Atlantic. However, surface heat-exchange with atmosphere can also play a dominant role in the Barents Sea annual heat balance, especially for the subsequent year after ENSO events.


2020 ◽  
Author(s):  
Erica Madonna ◽  
Gabriel Hes ◽  
Clio Michel ◽  
Camille Li ◽  
Peter Yu Feng Siew

<p>Extratropical cyclones are a key player for the global energy budget as they transport a large amount of moisture and heat from mid- to high-latitudes. One of the main corridors for cyclones entering the Arctic from the North Atlantic is the Barents Sea, a region that has experienced the largest decrease in winter sea ice during the past decades. On the one hand, some studies showed that moisture transported by cyclones to the Arctic can lead to drastic temperature increases and sea ice melt. On the other hand, it has been suggested that the location of the sea ice edge can influence the tracks of cyclones. Therefore, it is crucial to understand what controls cyclone tracks through the Barents Sea into the Arctic to explain and potentially predict climate variability at high latitudes.</p><p>To address this question, we track cyclones from 1979 to 2018 in the ERA-Interim data set, characterizing and quantifying them depending on their genesis location and path. The focus is on cyclones entering the Barents Sea from the North Atlantic as they carry the most moisture into the Arctic. Despite a clear declining trend in sea ice in the Barents Sea, our results show neither significant changes in cyclone frequency nor in their tracks. However, we find that the large-scale flow and in particular the presence or absence of blocking in the Barents Sea influence the cyclone frequency in this region, providing a potential mechanism that controls high latitude climate variability.</p>


2021 ◽  
Author(s):  
Hannah Zanowski ◽  
Alexandra Jahn ◽  
Marika Holland

<p>Recently, the Arctic has undergone substantial changes in sea ice cover and the hydrologic cycle, both of which strongly impact the freshwater storage in, and export from, the Arctic Ocean. Here we analyze Arctic freshwater storage and fluxes in 7 climate models from the Coupled Model Intercomparison Project phase 6 (CMIP6) and assess their agreement over the historical period (1980-2000) and in two future emissions scenarios, SSP1-2.6 and SSP5-8.5. In the historical simulation, few models agree closely with observations over 1980-2000. In both future scenarios the models show an increase in liquid (ocean) freshwater storage in conjunction with a reduction in solid storage and fluxes through the major Arctic gateways (Bering Strait, Fram Strait, Davis Strait, and the Barents Sea Opening) that is typically larger for SSP5-8.5 than SSP1-2.6. The liquid fluxes through the gateways exhibit a more complex pattern, with models exhibiting a change in sign of the freshwater flux through the Barents Sea Opening and little change in the flux through the Bering Strait in addition to increased export from the remaining straits by the end of the 21st century. A decomposition of the liquid fluxes into their salinity and volume contributions shows that the Barents Sea flux changes are driven by salinity changes, while the Bering Strait flux changes are driven by compensating salinity and volume changes. In the straits west of Greenland (Nares, Barrow, and Davis straits), the models disagree on whether there will be a decrease, increase, or steady liquid freshwater export in the early to mid 21st century, although they mostly show increased liquid freshwater export in the late 21st century. The underlying cause of this is a difference in the magnitude and timing of a simulated decrease in the volume flux through these straits. Although the models broadly agree on the sign of late 21st century storage and flux changes, substantial differences exist between the magnitude of these changes and the models’ Arctic mean states, which shows no fundamental improvement in the models compared to CMIP5.</p>


2013 ◽  
Vol 10 (12) ◽  
pp. 8109-8128 ◽  
Author(s):  
P. E. Land ◽  
J. D. Shutler ◽  
R. D. Cowling ◽  
D. K. Woolf ◽  
P. Walker ◽  
...  

Abstract. We applied coincident Earth observation data collected during 2008 and 2009 from multiple sensors (RA2, AATSR and MERIS, mounted on the European Space Agency satellite Envisat) to characterise environmental conditions and integrated sea–air fluxes of CO2 in three Arctic seas (Greenland, Barents, Kara). We assessed net CO2 sink sensitivity due to changes in temperature, salinity and sea ice duration arising from future climate scenarios. During the study period the Greenland and Barents seas were net sinks for atmospheric CO2, with integrated sea–air fluxes of −36 ± 14 and −11 ± 5 Tg C yr−1, respectively, and the Kara Sea was a weak net CO2 source with an integrated sea–air flux of +2.2 ± 1.4 Tg C yr−1. The combined integrated CO2 sea–air flux from all three was −45 ± 18 Tg C yr−1. In a sensitivity analysis we varied temperature, salinity and sea ice duration. Variations in temperature and salinity led to modification of the transfer velocity, solubility and partial pressure of CO2 taking into account the resultant variations in alkalinity and dissolved organic carbon (DOC). Our results showed that warming had a strong positive effect on the annual integrated sea–air flux of CO2 (i.e. reducing the sink), freshening had a strong negative effect and reduced sea ice duration had a small but measurable positive effect. In the climate change scenario examined, the effects of warming in just over a decade of climate change up to 2020 outweighed the combined effects of freshening and reduced sea ice duration. Collectively these effects gave an integrated sea–air flux change of +4.0 Tg C in the Greenland Sea, +6.0 Tg C in the Barents Sea and +1.7 Tg C in the Kara Sea, reducing the Greenland and Barents sinks by 11% and 53%, respectively, and increasing the weak Kara Sea source by 81%. Overall, the regional integrated flux changed by +11.7 Tg C, which is a 26% reduction in the regional sink. In terms of CO2 sink strength, we conclude that the Barents Sea is the most susceptible of the three regions to the climate changes examined. Our results imply that the region will cease to be a net CO2 sink in the 2050s.


Sign in / Sign up

Export Citation Format

Share Document