scholarly journals A NEW QoS GUARANTEE SLA BASED-SCHEME FOR HANDOFF CALLS IN WIRELESS NETWORKS

2017 ◽  
Vol 25 (1) ◽  
pp. 61-66
Author(s):  
Nguyen Cao Phuong ◽  
Tran Hong Quan ◽  
Sang-Ho Lee ◽  
Jung-Mo Moon

The most important thing is guarantee QoS over wireless infrastructures. The efficient of service level agreement (SLA) is becoming increasingly important to both service providers and customers. This paper presents some traffic control schemes for improving QoS, trafficmodel and performance evaluation are described. We are defining a new scheme for improving handoff call performances in wireless networks, a finite queuing scheme for the handoff calls. SLA measurement calculates the packet delay parameter (PD) of handoff calls. The handoff calls will be accepted into queue if their PD will be smaller than the average waiting time of the queue. Important performance measures of the suggested scheme such as the blocking probability of new call and dropping probability of handoff call are described and evaluated.  

2018 ◽  
Vol 11 (2) ◽  
pp. 30-42
Author(s):  
Vinicius Da Silveira Segalin ◽  
Carina Friedrich Dorneles ◽  
Mario Antonio Ribeiro Dantas

Cloud computing is a paradigm that presents many advantages to both costumers and service providers, such as low upfront investment, pay-per-use and easiness of use, delivering/enabling scalable services using Internet technologies. Among many types of services we have today, Database as a Service (DBaaS) is the one where a database is provided in the cloud in all its aspects. Examples of aspects related to DBaaS utilization are data storage, resources management and SLA maintenance. In this context, an important feature, related to it, is resource management and performance, which can be done in many different ways for several reasons, such as saving money, time, and meeting the requirements agreed between client and provider, that are defined in the Service Level Agreement (SLA). A SLA usually tries to protect the costumer from not receiving the contracted service and to ensure that the provider reaches the profit intended. In this paper it is presented a classification based on three main parameters that aim to manage resources for enhancing the performance on DBaaS and guarantee that the SLA is respected for both user and provider sides benefit. The proposal is based upon a survey of existing research work efforts.


Author(s):  
Amandeep Kaur Sandhu ◽  
Jyoteesh Malhotra

This article describes how a rapid increase in usage of internet has emerged from last few years. This high usage of internet has occurred due to increase in popularity of multimedia applications. However, there is no guarantee of Quality of Service to the users. To fulfill the desired requirements, Internet Service Providers (ISPs) establish a service level agreement (SLA) with clients including specific parameters like bandwidth, reliability, cost, power consumption, etc. ISPs make maximum SLAs and decrease energy consumption to raise their profit. As a result, users do not get the desired services for which they pay. Virtual Software Defined Networks are flexible and manageable networks which can be used to achieve these goals. This article presents shortest path algorithm which improves the matrices like energy consumption, bandwidth usage, successful allocation of nodes in the network using VSDN approach. The results show a 40% increase in the performance of proposed algorithms with a respect to existing algorithms.


2017 ◽  
Vol 4 (3) ◽  
pp. 83-95
Author(s):  
T. A. Chavan ◽  
P. Saras

Wireless communication technology is progressing very vastly. With this change in technology customer services for multimedia and non-multimedia are increasing day by day. But due to limited resources of the wireless network, we need to design an efficient CAC algorithm to enhance QoS levels for end users. The Quality of service (QoS) enhancement in the wireless network is related to making an efficient use of current network resources and the optimization of the users. Call acceptance in CAC is one of the challenge in mobile cellular networks to ensure that the acceptance of a new call into a resource limited wireless network should not deviate the service level Agreement (SLAs) at the time of conversations. In the next generation wireless network, CAC has the direct impact on QoS for user calls & overall system performance. To handle handoff calls and new calls in cellular network channel reservation scheme have been already proposed to reserve system bandwidth for higher priority call for CAC. This earlier proposed scheme is not as per the required level of satisfaction because the available reversed bandwidth is not allocated properly in case of least handoff rate. In this, the authors like to present a new channel borrowing scheme where new non real time (NRT) calls can make use of reserved channels. It can borrow this reserved channel on a temporary basis and after this immediately if any handoff call enters the current cell and no any other channels are available, then it will pre-empt the channel from an earlier borrowed NRT user if exists. This pre-empted NRT call is kept in the priority queue to consider its service when any channel becomes free. The number of NRT calls in the queue should not be large to avoid delayed service. The fundamental objective of the proposed scheme to design of the system for evaluating the results and comparing with the results of the existing system. From the results of current research work, it is observed that proposed scheme decreases call dropping probability which increase slightly in call blocking rate over high-density handoff call rate.


2021 ◽  
Vol 17 (2) ◽  
pp. 179-195
Author(s):  
Priyanka Bharti ◽  
Rajeev Ranjan ◽  
Bhanu Prasad

Cloud computing provisions and allocates resources, in advance or real-time, to dynamic applications planned for execution. This is a challenging task as the Cloud-Service-Providers (CSPs) may not have sufficient resources at all times to satisfy the resource requests of the Cloud-Service-Users (CSUs). Further, the CSPs and CSUs have conflicting interests and may have different utilities. Service-Level-Agreement (SLA) negotiations among CSPs and CSUs can address these limitations. User Agents (UAs) negotiate for resources on behalf of the CSUs and help reduce the overall costs for the CSUs and enhance the resource utilization for the CSPs. This research proposes a broker-based mediation framework to optimize the SLA negotiation strategies between UAs and CSPs in Cloud environment. The impact of the proposed framework on utility, negotiation time, and request satisfaction are evaluated. The empirical results show that these strategies favor cooperative negotiation and achieve significantly higher utilities, higher satisfaction, and faster negotiation speed for all the entities involved in the negotiation.


Author(s):  
V. Pouli ◽  
C. Marinos ◽  
M. Grammatikou ◽  
S. Papavassiliou ◽  
V. Maglaris

Traditionally, network Service Providers specify Service Level Agreements (SLAs) to guarantee service availability and performance to their customers. However, these SLAs are rather static and span a single provider domain. Thus, they are not applicable to a multi–domain environment. In this paper, the authors present a framework for automatic creation and management of SLAs in a multi-domain environment. The framework is based on Service Oriented Computing (SOC) and contains a collection of web service calls and modules that allow for the automatic creation, configuration, and delivery of an end-to-end SLA, created from the merging of the per-domain SLAs. This paper also presents a monitoring procedure to monitor the QoS guarantees stipulated in the SLA. The SLA establishment and monitoring procedures are tested through a Grid application scenario targeted to perform remote control and monitoring of instrument elements distributed across the Grid.


Author(s):  
Kaouthar Fakhfakh ◽  
Tarak Chaari ◽  
Said Tazi ◽  
Mohamed Jmaiel ◽  
Khalil Drira

The establishment of Service Level Agreements between service providers and clients remains a complex task regarding the uninterrupted growth of the IT market. In fact, it is important to ensure a clear and fair establishment of these SLAs especially when providers and clients do not share the same technical knowledge. To address this problem, the authors started modeling client intentions and provider offers using ontologies. These models helped them in establishing and implementing a complete semantic matching approach containing four main steps. The first step consists of generating correspondences between the client and the provider terms by assigning certainties for their equivalence. The second step corrects and refines these certainties. In the third step, the authors evaluate the matching results using inference rules, and in the fourth step, a draft version of a Service Level Agreement is automatically generated in case of compatibility.


Author(s):  
Tapati Bandopadhyay ◽  
Pradeep Kumar

The concept of presence was initially associated with an instant messaging service, allowing an end user to recognize the presence of a peer online to send or receive messages. Now the technology has grown up to include various services like monitoring performance of any type of end user device, and services are accessible from anywhere, any time. The need for enhanced value remains the driving force behind these services, for example, Voice over Internet Protocol (VoIP) services, which is drawing tremendous research interest in services performance evaluation, measurement, benchmarking, and monitoring. Monitoring service level parameters happens to be one of the most interesting application-oriented research issues because various service consumers at the customer companies/end users’ level are finding it very difficult to design and monitor an effective SLA (Service Level Agreement) with the presence-enabled service providers. This chapter focuses on to these specific issues and presents a new approach of SLA monitoring through Data Envelopment Analysis (DEA). This extreme point approach actually can work much better in the context of SLA monitoring than general central-tendency-based statistical tools, a fact which has been corroborated by similar application examples of DEA presented in this chapter and has therefore it acts as the primary motivation to propose this new approach. Towards this end, this chapter first builds up the context of presence-enabled services (Day, Rosenburg, & Sugano, 2000), its SLA and SLA parameters, and the monitoring requirements. Then it explains the basics of DEA and its application in various other engineering and services context. Ultimately, a DEA application framework for monitoring an SLA of presence-enabled services is proposed which can serve as a clear guideline for the customers of presence-enabled services, not only for SLA monitoring but also at various other stages of implementing presence-enabled services frameworks. This approach exploits the definitive suitability of the application of DEA methods to presence-enabled service monitoring problems, and can be easily implemented by the industry practitioners.


Electronics ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 852 ◽  
Author(s):  
Sajid Latif ◽  
Syed Mushhad Gilani ◽  
Rana Liaqat Ali ◽  
Misbah Liaqat ◽  
Kwang-Man Ko

The interconnected cloud (Intercloud) federation is an emerging paradigm that revolutionizes the scalable service provision of geographically distributed resources. Large-scale distributed resources require well-coordinated and automated frameworks to facilitate service provision in a seamless and systematic manner. Unquestionably, standalone service providers must communicate and federate their cloud sites with other vendors to enable the infinite pooling of resources. The pooling of these resources provides uninterpretable services to increasingly growing cloud users more efficiently, and ensures an improved Service Level Agreement (SLA). However, the research of Intercloud resource management is in its infancy. Therefore, standard interfaces, protocols, and uniform architectural components need to be developed for seamless interaction among federated clouds. In this study, we propose a distributed meta-brokering-enabled scheduling framework for provision of user application services in the federated cloud environment. Modularized architecture of the proposed system with uniform configuration in participating resource sites orchestrate the critical operations of resource management effectively, and form the federation schema. Overlaid meta-brokering instances are implemented on the top of local resource brokers to keep the global functionality isolated. These instances in overlay topology communicate in a P2P manner to maintain decentralization, high scalability, and load manageability. The proposed framework has been implemented and evaluated by extending the Java-based CloudSim 3.0.3 simulation application programming interfaces (APIs). The presented results validate the proposed model and its efficiency to facilitate user application execution with the desired QoS parameters.


2020 ◽  
Vol 17 (9) ◽  
pp. 3904-3906
Author(s):  
Susmita J. A. Nair ◽  
T. R. Gopalakrishnan Nair

Increasing demand of computing resources and the popularity of cloud computing have led the organizations to establish of large-scale data centers. To handle varying workloads, allocating resources to Virtual Machines, placing the VMs in the most suitable physical machine at data centers without violating the Service Level Agreement remains a big challenge for the cloud providers. The energy consumption and performance degradation are the prime focus for the data centers in providing services by strictly following the SLA. In this paper we are suggesting a model for minimizing the energy consumption and performance degradation without violating SLA. The experiments conducted have shown a reduction in SLA violation by nearly 10%.


Sign in / Sign up

Export Citation Format

Share Document