scholarly journals Dynamic Mechanical Thermal Analysis (DMTA) of Thermoplastic Natural Rubber (TPNR) Barium Ferrite (bafe12o19) Composites

2017 ◽  
Vol 21 (1) ◽  
pp. 69 ◽  
Author(s):  
S Hamdan ◽  
D.M.A Hasihim ◽  
M Yusop

filled with 0-6 volume percentage of barium ferrite was performed using a Polymer Laboratory- Dynamic Mechanical Thermal Analyser (PL-DMTA) over a range of temperature from -100 to 100°C at 10hz. The results showed that the storage modulus (E') of the composites below the transition temperature increase with filler content up to ~3-4 volume percentage. Incorporation of the filler does not change the matrix glass transition that occurs around -40°C but the damping curve becomes broader with increasing filler content. The addition of filler in the compositedoes not affect the glass transition and melting temperature. The blend of TPNR and barium ferrite powder is only a physical mixture that does not act chemically.

2003 ◽  
Vol 778 ◽  
Author(s):  
Ho Seung Jeon ◽  
Ju-Myung Song ◽  
Joon-Seop Kim

AbstractThe effects of the addition of mixed cations, i.e. Na+/Cs+, Ba2+/Cs+, and Ba2+/Zn2+, to the acid form sulfonated styrene copolymers on their dynamic mechanical properties and morphology were investigated. It was found that the matrix glass transition temperatures did not change with the ratio of the one cation to the other. As expected, however, the ratio of one cation to the other in the mixed cations affected cluster glass transition temperatures significantly. It was also found that the activation energies for the glass transitions for the matrix phase remained constant, while those for the cluster phase changed with the ratio of the two cations. In addition, the position of the SAXS peak was found to be affected by the type of cations. From the results obtained above, the decrease in the cluster Tg with increasing the amount of cesium and zinc cations in Na/Cs, Ba/ Cs, and Ba/Zn mixtures, were explained on the basis of the considerations of the size, charge, and type of cations, which alter the degree of clustering as well as ion-hopping mechanism.


1990 ◽  
Vol 68 (7) ◽  
pp. 1228-1232 ◽  
Author(s):  
Denis Duchesne ◽  
Adi Eisenberg

The thermal and dynamic mechanical properties of random butyl acrylate- and plasticized ethyl acrylate-based vinylpyridinium ionomers have been investigated. The properties of the ionomers were found to be dependent on the glass transition temperature of the matrix material. Ionomers having a glass transition temperature lower than ca. 25 °C exhibited all the features associated with the presence of phase-separated microdomains or clusters while the materials with higher glass transition temperatures were not. It was also observed that the dispersion associated with the vinylpyridinium clusters for a butyl acrylate-based ionomer with 12 mol% of ionic units occurs at ca. 25 °C. This value is very close to that observed previously by Otocka and Eirich in their study of a butadiene-based vinylpyridinium ionomer with the same ion content. Keywords: ionomers, plasticization, clustering, glass transition, dynamic mechanical properties.


Polymers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 490
Author(s):  
Xing Huang ◽  
Songbo Chen ◽  
Songhan Wan ◽  
Ben Niu ◽  
Xianru He ◽  
...  

Poly (butyl methacrylate) (PBMA) was blended with a series of phenolic resins (PR) to study the effect of PR molecular weight on dynamic mechanical properties of PBMA/PR composites. Differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) found a similar variation of glass transition temperature (Tg). The maximum loss peak (tanδmax) improved in all PBMA/PR blends compared with the pure PBMA. However, tanδmax reduced as the molecular weight increased. This is because PR with higher molecular weight is more rigid in the glass transition zone of blends. The hydrogen bonding between PBMA and PR was characterized by Fourier transform infrared spectroscopy (FTIR). Lower molecular weight PR formed more hydrogen bonds with the matrix and it had weaker temperature dependence. Combined with the results from DMA, we studied how molecular weight affected hydrogen bonding and thus further affected tanδmax.


1983 ◽  
Vol 61 (4) ◽  
pp. 680-687 ◽  
Author(s):  
Thein Kyu ◽  
Mitsuaki Hashiyama ◽  
Adi Eisenberg

The dynamic mechanical properties of Nafion precursor were determined as a function of the degree of conversion to the sodium ionomer, and those of the acid as a function of the degree of conversion to the cesium salt. A run was also made on the barium neutralized material, as well as on a remolded sample of a partly converted precursor. The precursor shows four dispersions which (in order of decreasing temperature) are identified with the glass transition, motions of the ether side chains, CF2 groups in the backbone, and pendant SO2F groups. Four relaxation regions are also seen in the ionomer, which are identified with the glass transition of the ionic regions and of the matrix, as well as with motions of the ether side chains and the backbone CF2 groups. While the polymers in the acid and the salt forms arc compatible, as seen by the gradual movement of the ionic glass transition peak to higher temperatures with increasing degree of neutralization, the salt and the precursor are not compatible. In the barium salt, the ionic glass transition peak occurs at a temperature close to the melting point of the crystalline regions, and most likely contains a contribution from that process also.


2018 ◽  
Vol 7 (3.32) ◽  
pp. 54 ◽  
Author(s):  
Hashem Al-Mattarneh

The rapid development of electronic systems and telecommunications has resulted in a growing and intense interest in microwave electromagnetic absorber technology and microwave absorbing composite material. This research was conducted to develop microwave absorber composites called thermoplastic natural rubber barium ferrite (TPNR-BF). The composite was characterized by determination of its physical, mechanical, magnetic and microwave properties. TPNR-BF with the fine particles barium ferrite filler content of 0-20% by weight were prepared using melt blending method. The microwave electromagnetic properties were measured using free-space microwave non-destructive testing system (MNDTS) in the frequency range of 7-13 GHz. The mechanical and Magnetic properties of the thermoplastic natural rubber-barium ferrite were also measured using Magnetometer. The effects of the different percentage of filler content on the mechanical and microwave properties of the composites have been evaluated. Both microwave dielectric constant and the reflection coefficient of TPNR-BF increase with increasing frequency and filler content while transmission coefficient decreases with increasing filler content which indicates that the composite absorbs more microwave energy by the filler. Barium ferrite contents show an inverse relation with the mechanical properties such as tensile strength and stiffness. MNDTS shows excellent capability for advanced characterization of a microwave composite material.  


2016 ◽  
Vol 36 (2) ◽  
pp. 149-160 ◽  
Author(s):  
Sandro Donnini Mancini ◽  
Antídio de Oliveira Santos Neto ◽  
Maria Odila Hilário Cioffi ◽  
Eduardo Carlos Bianchi

A feasibility study was conducted to determine the use of polyphthalamide/glass-fiber and polyphthalamide/glass-fiber/polytetrafluoroethylene-based composites as substitutes for aluminum and steel, respectively, in the production of motorcycle oil pump parts (housing, shaft/inner gerotor and outer gerotor). New and used (80,000 km) oil pumps were subjected to performance tests, whose results indicated that the pressure and temperature of the used pump reached a maximum of 1.8 bar and 93℃, respectively. Thermogravimetric analysis indicated that the materials are stable at the maximum operating temperature, which is 20℃ lower than the minimum glass transition temperature obtained by dynamic mechanical analysis for both materials at the analyzed frequencies (defined after calculations based on rotations in neutral, medium and high gear). The pressure value was multiplied by a safety factor of at least 1.6 (i.e., 3 bar), which was used as input for a finite element analysis of the parts, as well as the elasticity modulus at glass transition temperatures obtained by dynamic mechanical analysis. The finite element analysis indicated that the von Mises stresses to which the composite parts were subjected are 7 to 50 times lower than those the materials can withstand. The results suggest that it is feasible to manufacture motorcycle oil pump parts with these composites.


Sign in / Sign up

Export Citation Format

Share Document