New Approach in Developing Minimum Facility Platform (MFP) Through Standardization Design in Medco E&P Offshore

2021 ◽  
Author(s):  
Y. Cahyono

The purpose of this paper is to explain a new approach has to be taken by Medco E&P Indonesia in order to meet cost optimization and schedule efficiencies in the development of marginal fields which become necessary to streamline the design process for platforms and employ value engineering consideration. Development of marginal fields using minimum facilities platform rely on existing infrastructure has enabled oil and gas operators to build the minimum platform without the large capital expenditure associated with the new production facilities. This paper will show that minimum facilities platform (MFP) can be selected and developed at relatively low cost and designed to suit the specific topside surface facility and fabrication and/or installation requirements according to weight and quantity of equipment in the platform. The biggest challenges involved in the design of minimum facilities platform are the fields have 300 feet (90 m) water depth in average, environmental conditions and no experience previously to design of minimum facilities platform to cover topside requirements such as drilling, surface facilities and substructure requirements such as mono pile type, jacket types and conductor legs. Classification of the minimum facility platform design concept types and design selection guideline are therefore possible to be quickly developed within a range of structural solutions and topside design which is inherently safe as far as practicable, fit for purpose and in reliable manner. This new approach successfully brings up some minimum facilities platform to be implemented in the marginal fields to extend remaining life of the existing facilities economically and within value engineering manner.

2018 ◽  
Vol 58 (2) ◽  
pp. 516
Author(s):  
Daein Cha

There are ~240 discovered, but stranded, offshore gas resources within the range of ~0.5 to 5.0 trillion cubic feet (TCF) of estimated ultimate recovery (EUR) of which ~40 such fields, representing 65 TCF of EUR, resides within Australian jurisdiction. Operators are challenged to commercialise these gas resources due to several factors such as: • lack of materiality within their oil and gas resource portfolio, • remote location, and • lack of a low-cost development concept. For such resources, a predetermined low-cost, small scale (∼1.0 million tonnes per annum production capacity) floating liquefied natural gas vessel and subsea wells tie-back development concept can be deployed to achieve commercialisation. Furthermore, the following should be promoted for the adoption to commercialise such gas resources: • target breakeven liquefied natural gas (LNG) price as a key metric to confirm fit of the resource and the development concept, • innovative financing and commercial structures to be co-developed among key stakeholders to enable project development within the constraint of a target breakeven LNG price, and • differentiated LNG offtake value proposition for securing LNG offtake contracts that underpin project bankability.


2019 ◽  
Vol 2019 (4) ◽  
pp. 7-22
Author(s):  
Georges Bridel ◽  
Zdobyslaw Goraj ◽  
Lukasz Kiszkowiak ◽  
Jean-Georges Brévot ◽  
Jean-Pierre Devaux ◽  
...  

Abstract Advanced jet training still relies on old concepts and solutions that are no longer efficient when considering the current and forthcoming changes in air combat. The cost of those old solutions to develop and maintain combat pilot skills are important, adding even more constraints to the training limitations. The requirement of having a trainer aircraft able to perform also light combat aircraft operational mission is adding unnecessary complexity and cost without any real operational advantages to air combat mission training. Thanks to emerging technologies, the JANUS project will study the feasibility of a brand-new concept of agile manoeuvrable training aircraft and an integrated training system, able to provide a live, virtual and constructive environment. The JANUS concept is based on a lightweight, low-cost, high energy aircraft associated to a ground based Integrated Training System providing simulated and emulated signals, simulated and real opponents, combined with real-time feedback on pilot’s physiological characteristics: traditionally embedded sensors are replaced with emulated signals, simulated opponents are proposed to the pilot, enabling out of sight engagement. JANUS is also providing new cost effective and more realistic solutions for “Red air aircraft” missions, organised in so-called “Aggressor Squadrons”.


Author(s):  
P. Sarwanto

Among other obligations imposed under the forestry permit, watershed rehabilitation planting is perceived by the upstream oil and gas sector as the most complex challenge to conquer. Despite its poor track in fulfilling timeline and required result, there are also other challenges to consider, for instance lack of critical location, weather, fire, land tenure, community habit and capability, and cost optimization. In attempt to respond these challenges, an innovation in management system is constructed at PT Pertamina Hulu Mahakam, embracing and tailoring all related challenges, difficulties, and complexities, escalating the activity to be beyond compliance. So that it will be able to deliver more than merely avoid the identified potential risks towards company. The management system, called PIRAMIDA TINGGI (Pemberdayaan Masyarakat untuk Melestarikan Hutan di Dunia demi Ketahanan Energi Nasional), actively involves government, community, and business sector as equilateral triangle that work together to perform watershed rehabilitation planting. Developed using ISO 9001:2015 process approach namely PDCA (Plan-Do-Check-Act), the PIRAMIDA TINGGI system is in line as well with NAWACITA (President Joko Widodo’s vision, mission and program). To encounter other issue found during field work, this system is equipped as well with another innovation tool named PARIDA, a geospatial mobile-desk top-web application that easily able to map and identify vegetation in real time for further geo-analyzing multi-purposes, to be operated by local community. Full set implementation of this system has benefitted all parties. To Company in form of significant cost efficiency around 13.9 MUSD and 7 days’ faster result delivery besides obligation fulfillment, for others in form of broader advantage of proven sustainability project that has gave contribution to 5P (People, Planet, Prosperity, Partnership and Peace), objectives required by UN Sustainable Development Goals 2030.


Author(s):  
Xi Wang ◽  
Danny Crookes ◽  
Sue-Ann Harding ◽  
David Johnston

AbstractThis paper proposes a new approach to universal access based on the premise that humans have the universal capacity to engage emotionally with a story, whatever their ability. Our approach is to present the “story” of museum resources and knowledge as a journey, and then represent this journey physically as a smart map. The key research question is to assess the extent to which our “story” to journey to smart map’ (SJSM) approach provides emotional engagement as part of the museum experience. This approach is applied through the creation of a smart map for blind and partially sighted (BPS) visitors. Made in partnership with Titanic Belfast, a world-leading tourist attraction, the interactive map tells the story of Titanic’s maiden voyage. The smart map uses low-cost technologies such as laser-cut map features and software-controlled multi-function buttons for the audio description (AD). The AD is enhanced with background effects, dramatized personal stories and the ship’s last messages. The results of a reception study show that the approach enabled BPS participants to experience significant emotional engagement with museum resources. The smart model also gave BPS users a level of control over the AD which gave them a greater sense of empowerment and independence, which is particularly important for BPS visitors with varying sight conditions. We conclude that our SJSM approach has considerable potential as an approach to universal access, and to increase emotional engagement with museum collections. We also propose several developments which could further extend the approach and its implementation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Manzar Fawad ◽  
Nazmul Haque Mondol

AbstractGeological CO2 storage can be employed to reduce greenhouse gas emissions to the atmosphere. Depleted oil and gas reservoirs, deep saline aquifers, and coal beds are considered to be viable subsurface CO2 storage options. Remote monitoring is essential for observing CO2 plume migration and potential leak detection during and after injection. Leak detection is probably the main risk, though overall monitoring for the plume boundaries and verification of stored volumes are also necessary. There are many effective remote CO2 monitoring techniques with various benefits and limitations. We suggest a new approach using a combination of repeated seismic and electromagnetic surveys to delineate CO2 plume and estimate the gas saturation in a saline reservoir during the lifetime of a storage site. This study deals with the CO2 plume delineation and saturation estimation using a combination of seismic and electromagnetic or controlled-source electromagnetic (EM/CSEM) synthetic data. We assumed two scenarios over a period of 40 years; Case 1 was modeled assuming both seismic and EM repeated surveys were acquired, whereas, in Case 2, repeated EM surveys were taken with only before injection (baseline) 3D seismic data available. Our results show that monitoring the CO2 plume in terms of extent and saturation is possible both by (i) using a repeated seismic and electromagnetic, and (ii) using a baseline seismic in combination with repeated electromagnetic data. Due to the nature of the seismic and EM techniques, spatial coverage from the reservoir's base to the surface makes it possible to detect the CO2 plume’s lateral and vertical migration. However, the CSEM low resolution and depth uncertainties are some limitations that need consideration. These results also have implications for monitoring oil production—especially with water flooding, hydrocarbon exploration, and freshwater aquifer identification.


2017 ◽  
Vol 31 (25) ◽  
pp. 1745001 ◽  
Author(s):  
Qiudong Guo ◽  
Peng Zhang ◽  
Lin Bo ◽  
Guibin Zeng ◽  
Dengqian Li ◽  
...  

With the rapid development of manufacturing technology of high temperature superconductive YB[Formula: see text]Cu3O[Formula: see text] YBCO materials and decreasing in cost of production, YBCO is marching into industrial areas with its good performances as source of high-magnetic field and rather low cost in reaching superconductivity. Based on analysis of the performance of high temperature superconductors YBCO and development of technology in superconductive magnetic separation both home and abroad, we propose a new approach of taking YBCO tape to make a solenoid as the source of a high magnetic field of magnetic separatior of ores. The paper also looks into the future of the YBCO high temperature superconductive magnetic separation from the perspective of technology and cost, as well as its applications in other industries.


Author(s):  
Graeme G. King ◽  
Satish Kumar

Masdar is developing several carbon capture projects from power plants, smelters, steel works, industrial facilities and oil and gas processing plants in Abu Dhabi in a phased series of projects. Captured CO2 will be transported in a new national CO2 pipeline network with a nominal capacity of 20×106 T/y to oil reservoirs where it will be injected for reservoir management and sequestration. Design of the pipeline network considered three primary factors in the selection of wall thickness and toughness, (a) steady and transient operating conditions, (b) prevention of longitudinal ductile fractures and (c) optimization of total project owning and operating costs. The paper explains how the three factors affect wall thickness and toughness. It sets out code requirements that must be satisfied when choosing wall thickness and gives details of how to calculate toughness to prevent propagation of long ductile fracture in CO2 pipelines. It then uses cost optimization to resolve contention between the different requirements and arrive at a safe and economical pipeline design. The design work selected a design pressure of 24.5 MPa, well above the critical point for CO2 and much higher than is normally seen in conventional oil and gas pipelines. Despite its high operating pressure, the proposed network will be one of the safest pipeline systems in the world today.


Sign in / Sign up

Export Citation Format

Share Document