scholarly journals INVESTIGATION OF HEAT TRANSFER OF NON-NEWTONIAN FLUID IN THE PRESENCE OF A POROUS WALL

Author(s):  
Navneet Singh ◽  
Ramesh Yadav

This study deals the investigation of heat transfer of non-Newtonian fluid in the presence of a porous bounding wall. Perturbation method is applied for the solution of non-linear differential equation. The main focus of this paper is to investigate the effects of parameters such as Reynolds number Re, Prandtl number Pr, permeability parameter K and n in the velocity of fluid and temperature coefficient. For fulfilling the purpose Matlab software has been used. The results show that velocity of non-Newtonian increases with increase of Reynolds number Re and temperature increases with increases of Prandtl number Pr.

2020 ◽  
Vol 24 (2 Part B) ◽  
pp. 1105-1115
Author(s):  
Uriel Filobello-Nino ◽  
Hector Vazquez-Leal ◽  
Agustin Herrera-May ◽  
Roberto Ambrosio-Lazaro ◽  
Victor Jimenez-Fernandez ◽  
...  

In this paper, we present modified homotopy perturbation method coupled by Laplace transform to solve non-linear problems. As case study modified homotopy perturbation method coupled by Laplace transform is employed in order to obtain an approximate solution for the non-linear differential equation that describes the steady-state of a heat 1-D flow. The comparison between approximate and exact solutions shows the practical potentiality of the method.


Author(s):  
Khaled J. Hammad

Convective heat transfer from suddenly expanding annular pipe flows are numerically investigated within the steady laminar flow regime. A parametric study is performed to reveal the influence of the annular diameter ratio, k, the Prandtl number, Pr, and the Reynolds number, Re, over the following range of parameters: k = {0, 0.5, 0.7}, Pr = {0.7, 1, 7, 100}, and Re = {25, 50, 100}. Heat transfer enhancement downstream of the expansion plane is only observed for Pr > 1. Peak wall-heat-transfer-rates always appear downstream of the flow reattachment point, in the case of suddenly expanding round pipe flows, i.e. k = 0. However, for suddenly expanding annular pipe flows, i.e., k = 0.5 and 0.7, peak wall-heat-transfer-rates always appear upstream of the flow reattachment point. The observed heat transfer augmentation is more dramatic for suddenly expanding annular flows, in comparison with the one observed for suddenly expanding pipe flows. For a given annular diameter ratio and Reynolds number, increasing the Prandtl number, always results in higher wall-heat-transfer-rates downstream the expansion plane.


1967 ◽  
Vol 30 (2) ◽  
pp. 337-355 ◽  
Author(s):  
Peter D. Richardson

An analysis is described for convection from a circular cylinder subjected to transverse oscillations relative to the fluid in which it is immersed. The analysis is based upon use of the acoustic streaming flow field. It is assumed that the frequency involved is sufficiently small that the acoustic wavelength in the fluid is much larger than the cylinder diameter, and that there is no externally imposed mean flow across or along the cylinder. Solutions are presented which are appropriate for a wide range of Prandtl number, and the cases of small and of large streaming Reynolds number are distinguished. The analysis compares favourably with experiments when the influence of natural convection is small.


1968 ◽  
Vol 32 (1) ◽  
pp. 21-28 ◽  
Author(s):  
C. A. Hieber ◽  
B. Gebhart

Theoretical results are obtained for forced heat convection from a circular cylinder at low Reynolds numbers. Consideration is given to the cases of a moderate and a large Prandtl number, the analysis in each case being based upon the method of matched asymptotic expansions. Comparison between the moderate Prandtl number theory and known experimental results indicates excellent agreement; no relevant experimental work has been found for comparison with the large Prandtl number theory.


Author(s):  
S.A.M. Said ◽  
M.A. Habib ◽  
M.O. Iqbal

A numerical investigation aimed at understanding the flow and heat transfer characteristics of pulsating turbulent flow in an abrupt pipe expansion was carried out. The flow patterns are classified by four parameters; the Reynolds number, the Prandtl number, the abrupt expansion ratio and the pulsation frequency. The influence of these parameters on the flow was studied in the range 104<Re<5×104, 0.7<Pr<7.0, 0.2<d/D<0.6 and 5<f<35. It was found that the influence of pulsation on the mean time‐averaged Nusselt number is insignificant (around 10 per cent increase) for fluids having a Prandtl number less than unity. This effect is appreciable (around 30 per cent increase) for fluids having Prandtl number greater than unity. For all pulsation frequencies, the variation in the mean time‐averaged Nusselt number, maximum Nusselt number and its location with Reynolds number and diameter ratio exhibit similar characteristics to steady flows.


Author(s):  
Haomin Yuan ◽  
Elia Merzari

The flow characteristic of fluid at low Prandtl number is of continued interest in the nuclear industry because liquid metals are to be used in the next-generation nuclear power reactors. In this work we performed direct numerical simulation (DNS) for turbulent channel flow with fluid of low Prandtl number. The Prandtl number was set to 0.025, which is representative of the behavior of liquid metals. Constant heat flux was imposed on the walls to study heat transfer behavior, with different boundary conditions for temperature fluctuation. The bulk Reynolds number was set as high as 50,000, with a corresponding friction Reynolds number of 1,200, which is closer to the situation in a reactor or a heat exchanger than used in normally available databases. Budgets for turbulent variables were computed and compared with predictions from several RANS turbulence models. In particular, the Algebraic Heat Flux Model (AHFM) has been the focus of this comparison with DNS data. The comparisons highlight some shortcomings of AHFM along with potential improvements.


2011 ◽  
Vol 3 (2) ◽  
pp. 271-281
Author(s):  
M. M. Rahman ◽  
M. M. Billah ◽  
M. A. Alim

A numerical investigation is conducted to analyze the steady flow and thermal fields as well as heat transfer characteristics in a vented square cavity with a built-in heat conducting horizontal solid circular obstruction. Hydrodynamic behavior, thermal characteristics and heat transfer results are obtained by solving the couple of Navier-Stokes and energy equations by using a weighted residuals Finite element method. The computation was made for different Reynolds number, Prandtl number ranging from 50 to 200 and from 0.71 to 7.1 at the three different convective regimes. Three different regimes are observed with increasing Ri: forced convection (with negligible free convection), mixed convection (comparable free and forced convection) and free convection dominated region (with higher free convection). The results are presented to show the effects of the Reynolds number, Prandtl number on flow pattern, thermal field and heat transfer characteristics at the three convective regimes. It is found that the flow and thermal field strongly depend on the Reynolds number, Prandtl number as well as Richardson number. As the Reynolds number and Prandtl number increase, the heat transfer rate increases but average fluid temperature in the cavity and temperature at the cylinder center decrease at the three convective regimes.Keywords: Mixed convection; Finite element method; Obstructed vented cavity; Prandtl number.© 2011 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved.doi:10.3329/jsr.v3i2.4344                J. Sci. Res. 3 (2), 271-281 (2011)


2015 ◽  
Vol 20 (4) ◽  
pp. 817-833
Author(s):  
M. Guria

Abstract The flow of a viscous incompressible fluid through a vertical channel in the presence of radiation immersed in a porous medium has been studied. Approximate solutions have been obtained for the velocity and temperature fields, shear stresses and rate of heat transfer using the perturbation technique. It is found that the primary velocity decreases with an increase in the radiation parameter as well as the Prandtl number for cooling of the plate. It is also found that with an increase in the permeability parameter, the primary velocity increases for cooling of the plate. The magnitude of the secondary velocity decreases near the plate y = 0 and increases near the plate y = d with an increase in the permeability parameter. The temperature distribution decreases with an increase of the radiation parameter as wall as the Prandtl number for cooling of the plate. The shear stresses and the rate of heat transfer, which are of physical interest, are presented in the form of tables.


1984 ◽  
Vol 106 (2) ◽  
pp. 448-452 ◽  
Author(s):  
T. J. Chung ◽  
J. Y. Kim

This paper is concerned with a two-dimensional analysis of combined mode heat transfer using finite elements. Conduction, convection, and radiation are coupled in the emitting, absorbing, and scattering medium. The standard Galerkin finite elements can be used if the product of Reynolds number and Prandtl number is equal to or less than 1000. It is shown that the two-dimensional heat flux integration can be efficiently performed via Gaussian quadrature applied to isoparametric finite elements where no limitations to optical thicknesses are imposed. Numerical results are demonstrated for a diverging or converging channel. It is observed that the radiation effect on the temperature profile is more significant in the diverging than in the converging channel. Effects of Reynolds number, Prandtl number, albedo, and optical thickness upon temperature distributions are also investigated.


Sign in / Sign up

Export Citation Format

Share Document