scholarly journals Fabrikasi Lapisan Tipis C-Cr pada Permukaan Si dengan Menggunakan Metode Sputtering

2019 ◽  
Vol 8 (3) ◽  
pp. 101-106
Author(s):  
P. Purwanto ◽  
Yunasfi ◽  
Salim Mustofa

Telah dilakukan pembuatan lapisan tipis karbon-krom (C-Cr) pada permukaan Si. Pelapisan C-Cr pada permukaan Si merupakan eletrode dalam bentuk lapisan tipis. Pengukuran struktur kristal lapisan tipis C-Cr pada permukaan Si dilakukan dengan difraksi sinar-x, pola difraksi yang nampak yaitu puncak C dan Cr. Ukuran kristalit dan regangan lapisan tipis C-Cr yaitu 18,40 A dan regangan 17,78 %. Pengukuran sifat listrk pada pelapisan karbon-krom (C- Cr) dan tanpa pelapisan meliputi konduktansi dan kapasitansi. Dari hasil pengukuran menunjukkan konduktansi lapisan tipis C-Cr dan kapasitansi menurun dengan kenaikan frekuensi, begitu juga dalam bentuk pellet C-Cr dan substrat Si. Hasil analisis permukaan dengan SEM menunjukkan lapisan tipis C- Cr. Pengujian lapisan tipis ini dilakukan guna mengetahui terbentuknya lapian tipis C-Cr dengan ditemukannnya unsur C dan Cr pada permukaan substrat Si. Dari spektrum Raman diperoleh panjang gelombang pada puncak yaitu 538 cm- 1. Hal ini menunjukkan adanya interaksi antara C dan Cr, sehingga puncak yang nampak adalah puncak karbon.Kata kunci : Lapisan tipis, Difraksi sinar-x, Konduktasni, Permukaan, Raman.AbstractTo had been done to make thin film of C-Cr on Si surface. Deposition carbon-chrom ( C-Cr ) on Si surface was electrode shape in the thin film. The measurement ctystall structure thin film of C-Cr on Si surface tobe done was with x-ray diffraction which was C and Cr. The crystall size and strain of C-Cr thin film was 18.40 A and strain 17.78 %. The measurement electrical properties on deposition of C-Cr and without deposition as follow conductance and capacitance. The result indicated, that conductance of C-Cr thin film and capacitance decreased with increasing of frequence and also pellet shape of C- Cr and C substract. The result of surface morphology with SEM, indicate to had became of thin film C-Cr on the Si surface. The examine thin film tobe done for know what the thin film of C-Cr was shaped with find out C and Cr on the Si substrate surface. From Raman spectrum tobe find out wave number on the peak 520.56 cm-1, indication that interaction between C and Cr, so that peeak which visible was pek of C.Key word : Thin film, X-ray diffraction, Conductance, Surface, Raman

1990 ◽  
Vol 7 (7) ◽  
pp. 308-311
Author(s):  
Li Chaorong ◽  
Mai Zhenhong ◽  
Cui Shufan ◽  
Zhou Junming ◽  
Yutian Wang

2012 ◽  
Vol 472-475 ◽  
pp. 1451-1454
Author(s):  
Xue Hui Wang ◽  
Wu Tang ◽  
Ji Jun Yang

The porous Cu film was deposited on soft PVDF substrate by magnetron sputtering at different sputtering pressure. The microstructure and electrical properties of Cu films were investigated as a function of sputtering pressure by X-ray diffraction XRD and Hall effect method. The results show that the surface morphology of Cu film is porous, and the XRD revealed that there are Cu diffraction peaks with highly textured having a Cu-(220) or a mixture of Cu-(111) and Cu-(220) at sputtering pressure 0.5 Pa. The electrical properties are also severely influenced by sputtering pressure, the resistivity of the porous Cu film is much larger than that fabricated on Si substrate. Furthermore, the resistivity increases simultaneously with the increasing of Cu film surface aperture, but the resistivity of Cu film still decreases with the increasing grain size. It can be concluded that the crystal structure is still the most important factor for the porous Cu film resistivity.


1988 ◽  
Vol 66 (5) ◽  
pp. 373-375 ◽  
Author(s):  
C. J. Arsenault ◽  
D. E. Brodie

Zn-rich and P-rich amorphous Zn3P2 thin films were prepared by co-evaporation of the excess element during the normal Zn3P2 deposition. X-ray diffraction techniques were used to investigate the structural properties and the crystallization process. Agglomeration of the excess element within the as-made amorphous Zn3P2 thin film accounted for the structural properties observed after annealing the sample. Electrical measurements showed that excess Zn reduces the conductivity activation energy and increases the conductivity, while excess P up to 15 at.% does not alter the electrical properties significantly.


2011 ◽  
Vol 383-390 ◽  
pp. 822-825
Author(s):  
Ping Luan ◽  
Jian Sheng Xie ◽  
Jin Hua Li

Using magnetron sputtering technology, the CuInSi thin films were prepared by multilayer synthesized method. The structure of CuInSi films were detected by X-ray diffraction(XRD), the main crystal phase peak is at 2θ=42.458°; The resistivity of films were measured by SDY-4 four-probe meter; The conductive type of the films were tested by DLY-2 conductivity type testing instrument. The results show that the annealing temperature and time effect on the crystal resistivity and crystal structure greatly.


1987 ◽  
Vol 2 (6) ◽  
pp. 827-838 ◽  
Author(s):  
Jeffrey R. Lince ◽  
Paul D. Fleischauer

The crystallinity and morphology of thin, radio-frequency (rf) -sputtered MoS2 films deposited on 440C stainless steel substrates at both ambient (∼70°C) and high temperatures (245°C) were studied by scanning electron microscopy (SEM) and by x-ray diffraction (Read thin-film photography and 0−20 scans). Under SEM the films exhibited a “ridgelike” (or platelike) formation region for thicknesses between 0.18 and 1.0 μm MoS2. X-ray diffraction was shown to give more detailed and accurate information than electron defraction, previously used for elucidating the structure of sputtered lubricant films. Read thin-film x-ray diffraction photographs revealed patterns consistent with the presence of polycrystalline films and strong orientation of the MoS2 crystallites. Correlation of those patterns with 0−20 scans of the films indicated that the basal planes of the MoS2 crystallites [i.e., the (001) planes] were perpendicular to the substrate surface plane, and that various edge planes [i.e., the (h k 0) planes] in the individual crystallites were parallel to the surface plane, in agreement with previous observations of thinner films. Sliding wear caused the crystallites to orient with their basal planes parallel to the surface plane. The crystallite lattices in all films in this study were shown to exhibit compressive stress (∼ 3%–5% with respect to natural molybdenite) in the direction perpendicular to the (h k 0) planes, and the worn films were expanded (i.e., exhibited tensile stress) perpendicular to the (001) plane. In addition, the shapes of the x-ray diffraction peaks were strongly influenced by the presence of oxygen impurities and/or sulfur vacancies in the MoS2 lattice, indicating that x-ray diffraction may provide a simple quality-control test for the production of a film with optimum lubricating properties.


2014 ◽  
Vol 535 ◽  
pp. 688-691 ◽  
Author(s):  
Wen Shiush Chen ◽  
Cheng Hsing Hsu ◽  
Wen Hua Kao ◽  
Yi Ting Yu ◽  
Pai Chuan Yang ◽  
...  

Thermal coating growth of ZnTe thermoelectric films were deposited on n-type Si substrate is studied. Structural analysis through x-ray diffraction (XRD) and scanning electron microscopy (SEM) were sensitive to the RTA treatment. The electrical properties and microstructure of these films were investigated with special emphasis on the effects of various annealing temperatures from 600°C to 800°C by RTA technique. The highest carrier concentration, lowest resistivity and mobility at an annealing temperature of 700°C are 3.5×1015cm-3, 0.25 Ω-cm, and 49 cm2V-1S-1. The resultant electrical properties have made ZnTe films as very interesting materials for thermoelectric device applications.


2013 ◽  
Vol 818 ◽  
pp. 88-91
Author(s):  
Kun Liu ◽  
Ji Sheng Yang ◽  
Rui Li ◽  
Wei Peng ◽  
Shi Pan

The properties of the absorber layer of solar cell CuInSe2(CIS) thin film made by electro-depostied method were researched in this article. Different concentration of reactant and voltage was applied to prepare the CIS film. The micro-Raman spectroscopy and X-ray diffraction (XRD) of CIS film was carried out. A correlation between the linewidth A1 mode of Raman spectrum and the XRD line and the voltage of electro-deposition technology was found.


2003 ◽  
Vol 784 ◽  
Author(s):  
Kumaravinothan Sarma ◽  
Peter Kr. Petrov ◽  
Neil McN. Alford

ABSTRACTA comparative study of microstructure and electrical properties of BaxSr1-xTiO3 films made by single- and multi-target pulsed laser deposition was carried out. The films were epitaxially grown on both LaAlO3 and MgO substrates. The structural properties of all samples were investigated using X-ray diffraction and Raman spectroscopy. The elemental composition of the samples was investigated using energy dispersive X-ray analysis. For electrical properties examination, a simple capacitor structure was patterned on the film surface. Thin films made using both methods exhibit similar structural and electrical properties; however the samples made by a multi-target method underwent phase transition in a broader temperature region. The results prove the possibility of using the multi-target pulse laser deposition as a more flexible method for engineering thin film stoichometry.


2014 ◽  
Vol 11 (2) ◽  
pp. 584-589
Author(s):  
Baghdad Science Journal

Preparation of superposed thin film (CdTe)1-xSex / ZnS) with concentration of (x= 0.1, 0.3, 0.5) at a temperature of substrate (Ts= 80 0C) by using Thermal Vacuum Evaporation System. The measurement of X-ray diffraction shows that the compounds CdTe, ZnS, (CdTe)1-xSex and (CdTe)1-xSex / ZnS have a polycrystalline structure, the C-V characteristic shows that the capacitance degrease by increasing the concentration (x) in reverse bias, while the I-V characteristic shows the current dark (Id) increase in forward and reverse bias by increasing (x) and the photocurrent (Iph) increase in reverse bias by increasing the concentration (x), the values of photocurrent are greater than from the values of the dark current for all concentrations.


1995 ◽  
Vol 405 ◽  
Author(s):  
S. M. Cho ◽  
K. Christensen ◽  
D. Wolfe ◽  
H. Ying ◽  
D. R. Lee ◽  
...  

AbstractWe have investigated on the effect of different substrate surfaces in changing the microstructure of μc-SixGe1-x:H films prepared by reactive magnetron sputtering. Films were deposited on hydrogen terminated Si(111), Si(100) surfaces, and surfaces chemical and plasma oxides. The thin film microstructure was characterized by Fourier transform infrared spectroscopy (FTIR), high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and Raman scattering.


Sign in / Sign up

Export Citation Format

Share Document