scholarly journals ANALYSIS OF THE EFFECT OF ADDITION OF INJECTION PLASTIC SEEDS (HDPE), QUARTZ SAND AND ADDITIVE TO CONCRETE MIXTURE

Author(s):  
Tjatur Rahmadi Maulana ◽  
Fredy Kurniawan

Plastic material is one of many materials that are difficult to decompose naturally and require hundreds of years to decompose completely. One way to reduce the volume of plastic waste is to process or recycle it. Plastic injection seeds (HDPE) is one type of processed plastic waste (HDPE). In this study using the concrete laboratory experimental method according to SNI 03-2834-2000. There are 2 stages in this concrete research, stage 1 is concrete with variations of quartz sand (20%, 30%, and 40%) to the weight of sand and the most optimum results are obtained in concrete mix with 40% quartz sand and 3% additive (TH1 / 40-28) which is equal to 613.1 kg / cm2 in the 28 day test, an increase of 42.34% from the compressive strength of normal concrete K300 of 430.73 kg / cm2. For phase 2, concrete with a variation of quartz sand is 40% and the addition of coarse aggregates from plastic seeds (HDPE) (20%, 30% and 40%) from the weight of gravel and find the most optimal results of concrete mix with 40% quartz, plastic 20% , additive 3% (TH2 / 20-28) which is equivalent to 359.5 kg / cm2 in a 28 day test, a decrease of 41.4% from the compressive strength of concrete stage 1 quartz sand 40% (TH1 / 40-28) from 613, 1 kg / cm2.

2021 ◽  
Vol 3 (3) ◽  
pp. 243-252
Author(s):  
Masril Masril ◽  
Jefry Rizaldo

Plastic Material Plastic waste is a problem that is very often encountered in urban and rural areas. The use of plastic in each year will continue to increase because food and beverage products all use materials made of plastic. However, the plastic in question is plastic that is difficult to contaminate with soil or commonly referred to as inorganic waste, which is difficult to self-destruct. This is what causes the amount of plastic waste to increase.Therefore, to reduce this waste, the volume of this waste is used in the development. Besides, the grain gradation of the aggregate has been determined with the aim of obtaining an increase in the compressive strength of the concrete with the addition of plastic waste. The quality of the concrete to be examined by the authors in this study is fc = 14.5 MPa. In other words, in this study the author tries to compare the compressive strength of concrete between normal concrete and concrete mixed with plastic waste. In this study also used a variation of plastic waste substitution with a ratio of 0%, 5%, 10% to the volume of fine aggregate. For each variation, 2 samples were used which included normal concrete so that the total test object used was 12 tested at 7 days, 14 days and 28 days of concrete.From the results of testing the compressive strength of concrete against normal concrete and mixed concrete with sawdust surian at the age of 28 days, the normal concrete compressive strength is 14.5 MPa, while in the sawdust mixture with a percentage of 5%, the concrete compressive strength is 14.14 MPa. 10% obtained a compressive strength of 17.05 MPa. From this test, it can be concluded that from each of the percentages that are made, the compressive strength increases along with the percentage of the amount of plastic waste added to the concrete mixture. In other words, the greater the percentage of plastic waste used, the higher the compressive strength and quality of the concrete produced.


2020 ◽  
Vol 2 (1) ◽  
pp. 31-57
Author(s):  
Ni Ketut Sri Astati Sukawati

Concrete with various variants is a basic requirement in building a building. The concrete mixture is diverse depending on the planning made beforehand. The cement mixture is usually in the form of a mixture of artificial stone, cement, water and fine aggregates and coarse aggregates. Aggregates (fine aggregates and coarse aggregates) function as fillers in concrete mixtures. (Subakti, A., 1994). However, in building construction, additives are often added, but there is still a sense of uncertainty at the time of dismantling the mold and the reference before the concrete reaches sufficient strength to carry its own weight and the carrying loads acting on it. To overcome the time of carrying out work related to concrete, it is necessary to find an alternative solution, for example by looking for alternative ingredients of concrete mixture on the basis of consideration without reducing the quality of the concrete. From the results of previous studies it was stated that due to the partial replacement of cement with Fly Ash, the strength of the pressure and tensile strength of the concrete had increased (Budhi Saputro, A., 2008). Based on the description above, the author seeks to examine how the compressive strength of concrete characteristics that occur by adding additives Addition H.E in the concrete mixture and is there any additive Additon H.E effect on the increase in the compressive strength characteristic of the concrete. From the results of the study, it was found that the compressive strength of the concrete with the addition of additives HE was that after the compressive strength test of the concrete cube was carried out and the analysis of concrete compressive strength of 10 specimens, in each experiment a cube specimen was made with the addition of additons. HE with a dose of 80 cc, 120 cc, and 200 cc can accelerate and increase the compressive strength of concrete characteristics.


2018 ◽  
Vol 45 ◽  
pp. 00116
Author(s):  
Jacek Szulej ◽  
Paweł Ogrodnik

In the paper it was decided to recognize the material characteristics of concrete based on ceramic aggregate, aluminous cement with the addition of zeolite (5%, 10%, 15%) and air entraining admixture. Aggregate crushed to 2 fractions was used for designing the concrete mix : 0-4 mm, and 4-8 mm. The research involved the use of clinoptilolite derived from the zeolite tuff deposit at Sokyrnytsya (Transcarpathia, Ukraine). The dominant component in the zeolite is clinoptilolite in an amount of about 75%. The research carried out by the authors showed that the addition of zeolite, among others, increases the compressive strength of concrete, significantly improves the frost resistance, which in the case of using only aluminous cement is very low. The obtained results confirm the possibility of using the above-mentioned components, which improve the concrete material properties and are environmentally friendly.


2018 ◽  
Vol 7 (3.35) ◽  
pp. 37
Author(s):  
T. Sarada ◽  
G. Sreeja

In this new era there are lot of changes are onaerved.But new materials and practices are not coming out that much. Some of the people uses some partial replacement of bitumen and tar which gives some satisfactory results. But later investigations prove that all those materials are not exhibits required properties in all aspects. In that time investigators turn their eye on the recycling materials like rubber and plastic. They noticed that both materials gives the satisfactory results. On the other hand the usage of plastic (polyethylene bags, pet bottles, polystyrene and other plastic products) products increases day by day, that leads to lot of pollution due to plastic waste. This plastic material takes hundreds of years to decompose in the soil. Hence they become complicated to environment. This plastic waste stops the percolations of rain water in to the soil and affects the drainage property of soil. It also damages the soil fertility.A new technology introduced to usages of plastic waste in bitumen to strengthen the bituminous concrete mix and increase the load bearing strength. It will help to reduce the waste plastic content and also make the pavement more durable and strong, economical also 


2019 ◽  
Vol 258 ◽  
pp. 04011
Author(s):  
Atur P. N. Siregar ◽  
Emma L. Pasaribu ◽  
I Wayan Suarnita

Coarse aggregate is the dominant constituent in concrete. Aggregate hardness is a variable needed to investigate in determining its effect on the critical stress intensity factors (KIC), dissipated fracture energy (Gf) and compressive strength (fc’) of the concrete. The hardness of coarse aggregate based on Los Angeles abrasion values of 16.7%., 22.6%, and 23.1% was used incorporated with Portland Composite Cement (PCC), and superplasticizer to create specimens. Cubes of 150x150x150 mm were employed to determine the fc’, and four beam sizes: 50x100x350 mm, 50x150x500 mm, 50x300x950 mm and 50x450x1250 mm were engaged to determine KIC and Gf. The fc’ and Gf of specimens manufactured by three different hardness of coarse aggregates were 45, 43, 40 MPa and 89.4, 54.0, 56.3 N/m respectively. KIC of specimens was 138.9, 119.4 and 114.1 MPa.mm1/2 for beam size of 50x100x350 mm; 148.2, 115.8 and 108.8 MPa.mm1/2 for beam size of 50x150x500 mm; 230.9, 183.1 and 157.9 MPa.mm1/2 for beam size of 50x300x950 mm; and 293.2, 248.1 and 244.3 MPa.mm1/2 for beam size of 50x450x1250 mm. Experimental results showed that decreasing hardness of coarse aggregate was found to have significant effect on the fracture toughness rather than on the compressive strength of concrete.


2019 ◽  
Vol 1 (1) ◽  
pp. 244-250
Author(s):  
Alina Pietrzak

Abstract Due to a constant increase in generating the amount of sewage waste it is necessary to find an alternative method of its use or disposal. One of such methods can be utilization of sewage sludge in construction materials industry, particularly in concrete technology and other materials based on cement. It allows using waste materials as a passive additive (filler) or also as an active additive (replacement of part of bonding material). The article aims at presenting the analysis of the effect of adding slag, achieved from wastewater sludge incineration in sewage treatment plant, on properties and quality of concrete mix and hardened concrete. Using an experimental method, the researcher designed the composition of the control concrete mix, which was then modified by means of slag. For all concrete mixtures determined – air content with the use of pressure method and consistency measured by the use of concrete slump test. For all concrete series the following tests were conducted: compressive strength of concrete after 7, 28 and 56 days of maturing, frost resistance for 100 cycles of freezing and thawing, water absorption. The use of slag, ground once in the disintegrator, causes a decrease of in compressive strength of concrete samples in relation to the control concrete series as well as bigger decrease in compressive strength after frost resistance test.


2020 ◽  
Vol 6 (10) ◽  
pp. 1932-1943
Author(s):  
Alvin Joseph Santos Dolores ◽  
Jonathan David Lasco ◽  
Timothy M. Bertiz ◽  
Kimjay M. Lamar

Infusing plastic waste to concrete and masonry structures is an increasingly common industry practice that has the potential to create an environment-friendly material that can improve some of the material’s properties, craft a novel means to repurpose plastic waste, and reduce the need for mining aggregates in the environment. This concept has been studied extensively in different forms of concrete, as shown by several studies; however, there is a dearth of studies focusing on the incorporation plastic waste in concrete hollow blocks (CHB). In this study, we aim to fill that gap by investigating on the effects of incorporating low-density polyethylene (LDPE), a commonly used plastic material, to CHB on its compressive strength and bulk density. Samples of varying percentages of LDPE replacement by volume (0, 10, 20, 30 and 40%) were fabricated and tested. Results showed a general trend of decreasing compressive strength and bulk density upon increasing the amount of LDPE pellets in CHB, which was also observed in previous studies. However, the compressive strength of CHB increased at 10% LDPE replacement, a result similar to a previous study. It was inferred that the strength of the plastic material could have a direct contribution to the compressive strength of CHB at low percentage of aggregate replacement. Statistical analysis showed that the mix with 10% LDPE pellets as replacement to sand was the best among the samples tested. It was shown that CHB infused with LDPE pellets has a higher compressive strength than what is normally used in the Philippines. It was concluded that based on compressive strength and bulk density, LDPE pellets is a viable material to use as partial replacement to sand in non-load bearing CHB.


2019 ◽  
Vol 3 (1) ◽  
pp. 11-23
Author(s):  
Helwiyah Zain

Aggregate is a natural mineral grains that serve as filler in concrete mix, and the greatest material contained in the concrete. These material influence on the properties of concrete, so that the diameter size selection is essential in making the concrete. This study aims to determine the effect of variations of aggregate maximum diameter to the compressive strength of concrete. In this study used 15 specimens, were divided into 3 groups witch each of 5 specimens. Each group is distinguished aggregate maximum diameter: 31.5 mm, 16 mm, and 8 mm. Specimens used in this study is the specimen cylinder with a diameter of 15 cm and 30 cm high. Speciment tested done at age of concrete 28 days. The average compressive strength of concrete for each group of test based on variations of  the aggregate maximum diameter is: for the aggregate maximum diameter of 31.5 mm = 249.67 kg / cm2; the aggregate maximum diameter 16 mm = 274.91 kg / cm2; and the aggregate maximum diameter of 8 mm = 326.74 kg / cm2. Based on these test results, show that the average compressive strength of the concrete for the aggregate maximum diameter of 16 mm is 10.11% stronger than the concrete with the aggregate maximum diameter of 31.5 mm; and the strength of concrete aggregate maximum diameter of 8 mm, 30.87% stronger than the concrete with aggregate maximum diameter of 31.5 mm.


Sign in / Sign up

Export Citation Format

Share Document