In Vitro Starch Digestibility and Total Carotenoid of Corn from Various Ways of Processing

Author(s):  
Rina Yenrina ◽  
Fauzan Azima ◽  
Rani Liganti ◽  
Heriyenni Heriyenni

This research aims to study in vitro starch digestibility, total carotenoid, and nutritional content from various ways of corn processing.  The design used in this study was explorative with six treatments is raw, boiled, steamed, roasted, fried, and puffing. The results showed that the lowest water content was found in popcorn (0.93%), the lowest ash content in raw corn (0.52%), the lowest fat content in raw corn (0.61%), the highest protein content in raw corn (8.80%), the highest starch content in popcorn (59.19%), the lowest amylose content in fried corn (19.56%) and the highest amylopectin in fried corn (80.44%), FFA content (0.33%) in fried corn, the highest carotenoid content (11.05 μg/g) was found in raw corn and the lowest carotene content(6.01 μg/g) was found in popcorn, the lowest starch digestibility (47.36%) was found in raw corn

2019 ◽  
Vol 15 (7) ◽  
pp. 725-734
Author(s):  
Erning Indrastuti ◽  
Teti Estiasih ◽  
Elok Zubaidah ◽  
Harijono

Background: High cyanide varieties of cassava must be detoxified before consumption. Several studies showed detoxification of cassava by slicing, submerged fermentation (soaking), solid state fermentation, and drying. One of traditional detoxification is combination of submerged and solid state fermentation and the effect of this processing on cyanide reduction and food properties has not been evaluation yet. Objective: This research studied the effect of solid state fermentation time on physicochemical, starch granule morphology, and in vitro starch digestibility of cassava flour from high cyanide varieties of Malang 4, Malang 6, and Sembung. Methods: Three varieties of high cyanide grated cassavas were soaked for 3 days in ratio of water to cassava 1:1. After draining for 1 hour, grated cassava was placed in a bamboo container and put in a humid place for 3-day solid state fermentation. Fermented grated cassavas were then dried, milled, and analyzed. Results: Solid state fermentation similarly affected cyanide reduction and characteristics of cassava flour for three high cyanide varieties. The detoxification process reduced cyanide to 89.70-93.42% and produced flour with a total cyanide of 8.25-10.89 mg HCN eq/kg dry matters, which is safe to consume. Fermentation decreased cyanide, starch content, titratable acidity, swelling power, and solubility; meanwhile pH, amylose content, water absorption, oil absorption, and in vitro starch digestibility increased in all three varieties studied. Submerged fermentation reduced the pH thus inhibiting the degradation of linamarin and cyanohydrin into free HCN. pH value was increased by solid state fermentation, from 4.43 to 6.90 that optimum for linamarin and cyanohydrin degradation into free HCN. The submerged and solid-state fermentation indeuce spontaneous microbial growth that affected chemical composition of cassava flour. The changes of structure and morphology of starch granules affected pasting properties, and Increased in vitro starch digestibility due to damaged granules. Conclusion: Solid-state fermentation reduced cyanide content of all three cassava varieties into the safe level for consumption, and aiso changed chemical, physical, and functional characteristics and starch digestibility of cassava flour.


2013 ◽  
Vol 111 (4) ◽  
pp. 699-705 ◽  
Author(s):  
Kai Lin Ek ◽  
Shujun Wang ◽  
Les Copeland ◽  
Jennie C. Brand-Miller

Potatoes are usually a high-glycaemic index (GI) food. Finding a low-GI potato and developing a screening method for finding low-GI cultivars are both health and agricultural priorities. The aims of the present study were to screen the commonly used and newly introduced cultivars of potatoes, in a bid to discover a low-GI potato, and to describe the relationship between in vitro starch digestibility of cooked potatoes and their in vivo glycaemic response. According to International Standard Organisation (ISO) guidelines, seven different potato cultivars were tested for their GI. In vitro enzymatic starch hydrolysis and chemical analyses, including amylose content analysis, were carried out for each potato cultivar, and correlations with the respective GI values were sought. The potato cultivars had a wide range of GI values (53–103). The Carisma cultivar was classified as low GI and the Nicola cultivar (GI = 69) as medium GI and the other five cultivars were classified as high GI according to ISO guidelines. The GI values were strongly and positively correlated with the percentage of in vitro enzymatic hydrolysis of starch in the cooked potatoes, particularly with the hydrolysis percentage at 120 min (r 0·91 and P <0·01). Amylose, dietary fibre and total starch content was not correlated with either in vitro starch digestibility or GI. The findings suggest that low-GI potato cultivars can be identified by screening using a high-throughput in vitro digestion procedure, while chemical composition, including amylose and fibre content, is not indicative.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bazila Naseer ◽  
H. R. Naik ◽  
Syed Zameer Hussain ◽  
Asif Bashir Shikari ◽  
Nowsheen Noor

AbstractEight commonly cultivated and consumed rice varieties of Northern Himalayan regions and a popular high amylose rice variety were characterized at Wx locus and evaluated for resistant starch (RS), in-vitro starch digestibility, predicted glycemic index (pGI), glycemic load (GL) and textural parameters. Cytosine and thymine repeats (CT)n at waxy locus (Wx) showed high association with apparent amylose content (AAC). Both pGI and GL varied substantially within the selected varieties. The pGI was relatively lower in high and intermediate amylose Indica varieties compared to low amylose Japonica ones. However, Koshikari despite being a low amylose variety showed relatively lower pGI and GL, due to its higher RS, dietary fiber, protein and fat content. It was thus presumed that in addition to AAC, RS and other grain components also affect the glycemic response. Inherent resistance to enzymatic hydrolysis was also found to be higher in firm textured and less sticky rice varieties. The genotypes—Lalat, Basmati-1509 and Koshikari, in view of their low to moderate pGI and relatively higher RS content, can be explored in future breeding programmes to develop rice varieties whose consumption will help to prevent hyper/hypo glycemic responses in Northern Himalayan regions, where daily staple diet is rice.


LWT ◽  
2021 ◽  
Vol 142 ◽  
pp. 111008
Author(s):  
Tengnu Liu ◽  
Kang Wang ◽  
Wei Xue ◽  
Li Wang ◽  
Congnan Zhang ◽  
...  

Foods ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 514
Author(s):  
Hilal Demirkesen-Bicak ◽  
Muhammet Arici ◽  
Mustafa Yaman ◽  
Salih Karasu ◽  
Osman Sagdic

This study aimed to evaluate the influence of sourdough fermentation on the estimated glycemic index (eGI), in vitro starch digestibility, and textural and sensory properties of eight experimentally prepared sourdough breads. Wheat and whole wheat flour bread samples were produced under different fermentation conditions (25 °C and 30 °C) and fermentation methods (type-1 and type-2). In type-1 fermentation, sourdough was obtained via spontaneous fermentation. Indigenous strains (Lactobacillus brevis ELB99, Lactiplantibacillus plantarum ELB75, and Saccharomyces cerevisiae TGM55) were used for type-2 fermentation. Fermentation type and temperature significantly affected eGI, the hydrolysis index (HI), the starch fraction, and the textural properties of the samples (p < 0.05). The resistant starch (RS) content increased after fermentation, while rapidly digestible starch (RDS), HI, and eGI decreased. RS values were significantly higher in type-2 than in type-1 at the same temperature for both flour types (p < 0.05). At 25 °C, RS values were higher in both fermentation types. In the white flour samples, eGI values were in the range of 60.8–78.94 and 62.10–78.94 for type-1 and type-2, respectively. The effect of fermentation type on eGI was insignificant (p < 0.05). In the whole flour samples, fermentation type and temperature significantly affected eGI (p < 0.05). The greatest eGI decreases were in whole wheat sourdough bread at 30 °C using type-2 (29.74%). The 30 °C and type-2 samples showed lower hardness and higher specific volume. This study suggests that fermentation type and temperature could affect the eGI and the textural and sensory properties of sourdough bread, and these factors should be considered during bread production. The findings also support the consumption of wheat and whole wheat breads produced by type-2 fermentation due to higher RS and slowly digestible starch (SDS) and lower RDS and eGI values.


Sign in / Sign up

Export Citation Format

Share Document