scholarly journals Bitter melon extract ameliorates palmitate-induced apoptosis via inhibition of endoplasmic reticulum stress in HepG2 cells and high-fat/high-fructose-diet-induced fatty liver

2018 ◽  
Vol 62 (0) ◽  
Author(s):  
Hwa Joung Lee ◽  
Rihua Cui ◽  
Sung-E Choi ◽  
Ja Young Jeon ◽  
Hae Jin Kim ◽  
...  
2020 ◽  
Vol 21 (1) ◽  
pp. 360 ◽  
Author(s):  
Charng-Cherng Chyau ◽  
Hsueh-Fang Wang ◽  
Wen-Juan Zhang ◽  
Chin-Chu Chen ◽  
Shiau-Huei Huang ◽  
...  

Non-alcoholic fatty liver disease (NAFLD) and -steatohepatitis (NASH) imply a state of excessive fat built-up in livers with/or without inflammation and have led to serious medical concerns in recent years. Antrodan (Ant), a purified β-glucan from A. cinnamomea has been shown to exhibit tremendous bioactivity, including hepatoprotective, antihyperlipidemic, antiliver cancer, and anti-inflammatory effects. Considering the already well-known alleviating bioactivity of A. cinnamomea for the alcoholic steatohepatitis (ASH), we propose that Ant can be beneficial to NAFLD, and that the AMPK/Sirt1/PPARγ/SREBP-1c pathways may be involved in such alleviations. To uncover this, we carried out this study with 60 male C57BL/6 mice fed high-fat high-fructose diet (HFD) for 60 days, in order to induce NAFLD/NASH. Mice were then grouped and treated (by oral administration) as: G1: control; G2: HFD (HFD control); G3: Ant, 40 mgkg (Ant control); G4: HFD+Orlistat (10 mg/kg) (as Orlistat control); G5: HFD+Ant L (20 mg/kg); and G6: HFD+Ant H (40 mg/kg) for 45 days. The results indicated Ant at 40 mg/kg effectively suppressed the plasma levels of malondialdehyde, total cholesterol, triglycerides, GOT, GPT, uric acid, glucose, and insulin; upregulated leptin, adiponectin, pAMPK, Sirt1, and down-regulated PPARγ and SREBP-1c. Conclusively, Ant effectively alleviates NAFLD via AMPK/Sirt1/CREBP-1c/PPARγ pathway.


Cells ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 23
Author(s):  
Jing-Hua Wang ◽  
Seung-Ju Hwang ◽  
Dong-Woo Lim ◽  
Chang-Gue Son

Cynanchum atratum, a medicinal herb, is traditionally used as an antidote, diuretic, and antipyretic in eastern Asia. The current study aimed to investigate the anti-fatty liver capacity of the ethanol extract of Cynanchum atratum (CAE) using a 10-week high-fat, high-fructose diet mouse model. A six-week treatment of CAE (from the fifth week) significantly attenuated the weights of the body, liver, and mesenteric fat without a change in diet intake. CAE also considerably restored the alterations of serum aminotransferases and free fatty acid, fasting blood glucose, serum and hepatic triglyceride, and total cholesterol, as well as platelet and leukocyte counts. Meanwhile, CAE ameliorated hepatic injury and lipid accumulation, as evidenced by histopathological and immunofluorescence observations. Additionally, CAE significantly lowered the elevation of hepatic TNF-α, the TNF-α/IL-10 ratio, fecal endotoxins, and the abundance of Gram-negative bacteria. Hepatic lipogenesis and β-oxidation-related proteins and gene expression, including PPAR-α, SREBP-1, SIRT1, FAS, CTP1, etc., were normalized markedly by CAE. In particular, the AMPK, a central regulator of energy metabolism, was phosphorylated by CAE at an even higher rate than metformin. Overall, CAE exerts anti-hepatic steatosis effects by reducing lipogenesis and enhancing fatty acid oxidation. Consequently, Cynanchum atratum is expected to be a promising candidate for treating chronic metabolic diseases.


Scientifica ◽  
2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Kanokwan Jarukamjorn ◽  
Nattharat Jearapong ◽  
Charinya Pimson ◽  
Waranya Chatuphonprasert

Excessive fat liver is an important manifestation of nonalcoholic fatty liver disease (NAFLD), associated with obesity, insulin resistance, and oxidative stress. In the present study, the effects of a high-fat, high-fructose diet (HFFD) on mRNA levels and activities of the antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), were determined in mouse livers and brains. The histomorphology of the livers was examined and the state of nonenzymatic reducing system was evaluated by measuring the glutathione system and the lipid peroxidation. Histopathology of the liver showed that fat accumulation and inflammation depended on the period of the HFFD-consumption. The levels of mRNA and enzymatic activities of SOD, CAT, and GPx were raised, followed by the increases in malondialdehyde levels in livers and brains of the HFFD mice. The oxidized GSSG content was increased while the total GSH and the reduced GSH were decreased, resulting in the increase in the GSH/GSSG ratio in both livers and brains of the HFFD mice. These observations suggested that liver damage and oxidative stress in the significant organs were generated by continuous HFFD-consumption. Imbalance of antioxidant condition induced by long-term HFFD-consumption might increase the risk and progression of NAFLD.


2020 ◽  
Vol 79 (OCE2) ◽  
Author(s):  
Chunjie Jiang ◽  
Shanshan Zhang ◽  
Hongmei Zeng ◽  
Jingjing Liu ◽  
Dan Li ◽  
...  

AbstractEmerging evidence has been revealed that high fat diet (HFD) correlate with insulin resistance (IR) which could be induced by endoplasmic reticulum stress (ERS). Recently, obesity or HFD induced nonalcoholic fatty liver disease (NAFLD) could promote alteration of iron metabolism. Disorder of iron metabolism have been linked to unnormal metabolism of glucose and lipid. Herein, we investigated the effect of impaired iron homeostasis on hepatic IR, focusing on ferritinophagy. Male C57/6J mice were administered with HFD (60% energy from fat) or LFD (10% energy from fat) for 10 weeks (n = 10), and Palmitic acid (PA)-insulin treated HepG2 cells were also established. Hepatic IR as evidenced by increased hepatic steatosis and decreased of p-AKT (48%, p < 0.0005), p-GSK-3β (34%, p < 0.05) in the liver of HFD mice. In addition, decreased iron level and expression NCOA4, as well as increased up-regulation of IRE1α and EIF2α were observed in HFD liver. By using desferrioxamine (DFO) and ferric ammonium citrate (FAC), we examined iron level on IRE1α and EIF2α. And glucose uptake assay shown that FAC supplementation, and ERS inhibitors of 4-PBA and STF could improve the glucose uptake of HepG2 cells in the presence of PA. Furthermore, we evaluated the glucose uptake of HepG2 cells incubated with adenovirus which mediated overexpression of NCOA4, FAC, 4-PBA (ERS inhibitor) or STF (IRE1 inhibitor). Taken together, deficiency of iron induced by impaired ferritinophagy induced hepatic IR, partly by aggravating hepatic ERS, especially IRE1 signal pathway in vivo and vitro. These findings provide evidence and new insight for therapeutic strategy of iron deficiency in NAFLD.


Sign in / Sign up

Export Citation Format

Share Document