scholarly journals Stability of Deep Underground Mine Drift through Complex Geology Conditions in Quang Ninh Coal Area

2020 ◽  
Vol 1 (2) ◽  
Author(s):  
Kiên Đặng Văn ◽  
Vo TRONG HUNG ◽  
Do NGOC ANH ◽  
Do NGOC THAI ◽  
Dao VAN CHI

The stability of deep underground mine drifts is pivotal to sustainable, safe mining in underground coal mines. The main objective of this research is to determine the stability and drifting safety issues in 500-m-deep deep underground mine drift through complex geology in the Quang Ninh coal area. The laboratory experimentation and field measurements were used to analyze the large deformations and failure characteristics of the surrounding rock, the influence factors of safe excavation and stability of deep underground mine drift, and to study the stability control countermeasures. This study also shows the main factors influencing the stability and drifting safety include complex geology zones, high in situ stress, poor mechanical properties and engineering performance of the argillaceous rock mass. According to the field study, the groutability of cement-matrix materials in the argillaceous rock in the complex geology zones were extremely poor, and deformations and failure of the surrounding rock were characterized by dramatic initial deformation, high long-term creep rate, obviously asymmetric deformations and failure, the rebound of roof displacements, overall loosened deformations of deep surrounding rock on a large scale, and high sensitivity to engineering disturbance and water immersion. Various geo-hazards occurred during the underground mine drift excavation, including roof collapse, groundwater inrush. Control techniques are proposed and should be adopted to ensure drifting safety and to control the stability of deep underground mine drift through complex geology zones, including choice of reasonable drift shape, reasonable support type, steel sets, regional strata reinforcement technique such as ground surface pre-grouting, primary enhanced control measures, grouting reinforcement technique, and secondary enclosed support measures for long-term stability, which are critical for ensuring the sustainable development of the underground coal mine.

2011 ◽  
Vol 90-93 ◽  
pp. 2073-2079
Author(s):  
Yu Feng Wang ◽  
Zhi Qiang Liu ◽  
Bin Song Jiang

In order to improve the mining benefit of coal resources, Chang Gouyu Coal Mine carried out the technology of mining without coal pillar in steep seam. The key of the technology was to ensure a long-term stability of the cross-entry roadway across the seam. Through the analysis of the nature of steep seam roof and floor rock, and based on the stability analysis and loose circle measured of surrounding rock of crosscut roadway, we brought forward adopting shotcrete rockbolt mesh and U-shaped steel complex support structure system. This complex support system could flex lengthways and compress in radial direction. The entirety integrated with the surrounding rock, and they formed into a whole. Application of the complex support system could effectively control the deformation of the surrounding rock collapse, and maintain the stability of the crosscut.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Wei Jing ◽  
Xu Wang ◽  
Pengwei Hao ◽  
Laiwang Jing ◽  
Weipei Xue

More and more attention has been paid to the supporting problem of deep soft rock roadway floor with long-term water immersion in recent years. However, the existing soft rock roadway support technology rarely takes into account the influence of the immersion softening phenomenon of the roadway floor and the self-supporting structure characteristics of the surrounding rock on the stability of the surrounding rock at the same time, and the influence of the creep characteristics of rock on the deformation zone of the surrounding rock requires further research on the nature and division of the self-supporting structure of the surrounding rock. In response to the issues mentioned, based on the loading and unloading properties of the surrounding rock of the soft rock roadway, a new concept of the internal and external self-bearing structure was proposed. The fact of water-immersed mudstone softening in the soft rock roadway floor was revealed through the field practice, and the shape of the internal and external bearing structure was determined based on the in situ monitoring results. Then, the instability mechanism of the internal and external self-bearing structure of the surrounding rock was analyzed, the position of the critical control point was calculated, and the key control technology based on the method of controlling floor heave by using double-row anchor cables to control the deformation of the roadway sides was put forward. Finally, the field industrial test showed that this support technology can effectively control the deformation and failure of soft rock roadway in the case of water immersion on the floor. This work can provide a technical reference for similar roadway support designs.


Mining ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 13-31
Author(s):  
Lech Stolecki ◽  
Krzysztof Szczerbiński

The paper presents the results of long-term continuous measurements of the deflection of the roof layers in the underground copper mine Polkowice-Sieroszowice, Poland belonging to KGHM Polska Miedź S.A. The measurements were performed with the use of the inclinometric method consisting of continuous registration of changes in the angle of inclination of the roof strata. The measurements were carried out using an inclinometer sensor fixed to the end of a rockbolt in the roof. Measurements presented in the article were made in various regions of the underground mine. The monitoring covered: The exploitation front, machinery chamber and the region of the experimental longwall mining of copper ore. The obtained results proved the usefulness of the developed method in the process of the evaluation of the stability of mining excavations. The sensors were highly sensitive and performed the measurements in a simple way; highly accurate and reliable results were obtained.


Author(s):  
Kris Singh ◽  
Indresh Rampall ◽  
Joseph Rajkumar

HI-SMUR 140 is a small (145 MWe) modular pressurized water reactor designed to harness fission energy without the use of a recirculation pump. HI-SMUR’s core resides deep underground in a thick-walled reactor vessel (RV) enclosed by a stainless steel-lined reinforced concrete “Reactor Well”. The HI-SMUR Nuclear Steam Supply System (NSSS) is a conjugated pressure vessel assemblage wherein the steam generator(s) are integrally joined to the RV, i.e., without any interconnecting piping, and the pressurizer is integral to the reactor vessel. There are no penetrations in the RV for over a height of 120 feet above the reactor core, which precludes the scenario of loss of coolant to the core from a postulated pipe break event. The rejection of decay heat from the reactor in the wake of a scram is engineered to occur without the aid of on-site or off-site power, making the HI-SMUR NSSS demonstrably capable of withstanding a cataclysmic environmental phenomenon of Fukushima’s intensity without loss of core cooling or without precipitating any damage to the plant or the surrounding environment. The system design places a premium on accessibility and maintainability of vital equipment such as the steam generators, RV internals, and the control rod drive assemblies. This paper is the first in a series of papers planned to explain and quantify the performance and safety aspects of HI-SMUR 140. In this paper, the thermal-hydraulic characteristics of the HI-SMUR NSSS are explored using classical hydraulic correlations which have served as the tool for the scoping parametric study of the system. In particular, the stability of the system under varying power output conditions and the long-term reliability of the fuel under the most adverse thermal/hydraulic conditions are presented.


MRS Advances ◽  
2019 ◽  
Vol 5 (3-4) ◽  
pp. 149-158
Author(s):  
Eduardo Ferreira ◽  
Katrien Hendrix ◽  
Nele Bleyen ◽  
Elie Valcke ◽  
Erik Coppens ◽  
...  

AbstractPlasma incineration might be a promising technique for the conditioning of various radioactive waste streams. Assessing the long-term durability of the plasma slag is essential to predict its performance during long-term disposal. In this paper, the stability of six plasma treated surrogate cemented concentrates or resins in a high pH environment is investigated. The slags were crushed (2 different granulometries) and immobilized in a cement matrix, after which samples were submitted to long-term durability tests (stability under water at 20 °C; stability in a high relative humidity environment at 38 °C) and to an accelerated Alkali-Silica-Reaction (ASR) test (1 M NaOH at 80 °C). The first results show that the expansion and strength loss of the cement-slag mixtures remain limited in the test conditions, although differences between the different materials and granulometries could be perceived. No visual damage was observed. Some tests are still ongoing and will last 2 years.


1979 ◽  
Vol 42 (04) ◽  
pp. 1135-1140 ◽  
Author(s):  
G I C Ingram

SummaryThe International Reference Preparation of human brain thromboplastin coded 67/40 has been thought to show evidence of instability. The evidence is discussed and is not thought to be strong; but it is suggested that it would be wise to replace 67/40 with a new preparation of human brain, both for this reason and because 67/40 is in a form (like Thrombotest) in which few workers seem to use human brain. A �plain� preparation would be more appropriate; and a freeze-dried sample of BCT is recommended as the successor preparation. The opportunity should be taken also to replace the corresponding ox and rabbit preparations. In the collaborative study which would be required it would then be desirable to test in parallel the three old and the three new preparations. The relative sensitivities of the old preparations could be compared with those found in earlier studies to obtain further evidence on the stability of 67/40; if stability were confirmed, the new preparations should be calibrated against it, but if not, the new human material should receive a calibration constant of 1.0 and the new ox and rabbit materials calibrated against that.The types of evidence available for monitoring the long-term stability of a thromboplastin are discussed.


Author(s):  
Valery А. Gruzdev ◽  
◽  
Georgy V. Mosolov ◽  
Ekaterina A. Sabayda ◽  
◽  
...  

In order to determine the possibility of using the method of mathematical modeling for making long-term forecasts of channel deformations of trunk line underwater crossing (TLUC) through water obstacles, a methodology for performing and analyzing the results of mathematical modeling of channel deformations in the TLUC zone across the Kuban River is considered. Within the framework of the work, the following tasks were solved: 1) the format and composition of the initial data necessary for mathematical modeling were determined; 2) the procedure for assigning the boundaries of the computational domain of the model was considered, the computational domain was broken down into the computational grid, the zoning of the computational domain was performed by the value of the roughness coefficient; 3) the analysis of the results of modeling the water flow was carried out without taking the bottom deformations into account, as well as modeling the bottom deformations, the specifics of the verification and calibration calculations were determined to build a reliable mathematical model; 4) considered the possibility of using the method of mathematical modeling to check the stability of the bottom in the area of TLUC in the presence of man-made dumping or protective structure. It has been established that modeling the flow hydraulics and structure of currents, making short-term forecasts of local high-altitude reshaping of the bottom, determining the tendencies of erosion and accumulation of sediments upstream and downstream of protective structures are applicable for predicting channel deformations in the zone of the TLUC. In all these cases, it is mandatory to have materials from engineering-hydro-meteorological and engineering-geological surveys in an amount sufficient to compile a reliable mathematical model.


2018 ◽  
Vol 35 (4) ◽  
pp. 133-136
Author(s):  
R. N. Ibragimov

The article examines the impact of internal and external risks on the stability of the financial system of the Altai Territory. Classification of internal and external risks of decline, affecting the sustainable development of the financial system, is presented. A risk management strategy is proposed that will allow monitoring of risks, thereby these measures will help reduce the loss of financial stability and ensure the long-term development of the economy of the region.


Sign in / Sign up

Export Citation Format

Share Document