Durability tests on plasma treated surrogate cemented concentrates and resins

MRS Advances ◽  
2019 ◽  
Vol 5 (3-4) ◽  
pp. 149-158
Author(s):  
Eduardo Ferreira ◽  
Katrien Hendrix ◽  
Nele Bleyen ◽  
Elie Valcke ◽  
Erik Coppens ◽  
...  

AbstractPlasma incineration might be a promising technique for the conditioning of various radioactive waste streams. Assessing the long-term durability of the plasma slag is essential to predict its performance during long-term disposal. In this paper, the stability of six plasma treated surrogate cemented concentrates or resins in a high pH environment is investigated. The slags were crushed (2 different granulometries) and immobilized in a cement matrix, after which samples were submitted to long-term durability tests (stability under water at 20 °C; stability in a high relative humidity environment at 38 °C) and to an accelerated Alkali-Silica-Reaction (ASR) test (1 M NaOH at 80 °C). The first results show that the expansion and strength loss of the cement-slag mixtures remain limited in the test conditions, although differences between the different materials and granulometries could be perceived. No visual damage was observed. Some tests are still ongoing and will last 2 years.

2020 ◽  
Vol 1 (2) ◽  
Author(s):  
Kiên Đặng Văn ◽  
Vo TRONG HUNG ◽  
Do NGOC ANH ◽  
Do NGOC THAI ◽  
Dao VAN CHI

The stability of deep underground mine drifts is pivotal to sustainable, safe mining in underground coal mines. The main objective of this research is to determine the stability and drifting safety issues in 500-m-deep deep underground mine drift through complex geology in the Quang Ninh coal area. The laboratory experimentation and field measurements were used to analyze the large deformations and failure characteristics of the surrounding rock, the influence factors of safe excavation and stability of deep underground mine drift, and to study the stability control countermeasures. This study also shows the main factors influencing the stability and drifting safety include complex geology zones, high in situ stress, poor mechanical properties and engineering performance of the argillaceous rock mass. According to the field study, the groutability of cement-matrix materials in the argillaceous rock in the complex geology zones were extremely poor, and deformations and failure of the surrounding rock were characterized by dramatic initial deformation, high long-term creep rate, obviously asymmetric deformations and failure, the rebound of roof displacements, overall loosened deformations of deep surrounding rock on a large scale, and high sensitivity to engineering disturbance and water immersion. Various geo-hazards occurred during the underground mine drift excavation, including roof collapse, groundwater inrush. Control techniques are proposed and should be adopted to ensure drifting safety and to control the stability of deep underground mine drift through complex geology zones, including choice of reasonable drift shape, reasonable support type, steel sets, regional strata reinforcement technique such as ground surface pre-grouting, primary enhanced control measures, grouting reinforcement technique, and secondary enclosed support measures for long-term stability, which are critical for ensuring the sustainable development of the underground coal mine.


1999 ◽  
Vol 82 (S 01) ◽  
pp. 171-175 ◽  
Author(s):  
D. Ebert ◽  
M. Langer ◽  
P. Uhrmeister

SummaryThe endovascular treatment of abdominal aortic aneurysms has generated a great deal of interest since the early 1990s, and many different devices are currently available. The procedure of endovascular repair has been evaluated in many institutions and the different devices are compared. The first results were encouraging, but complications like endoleak, dislocation or thrombosis of the graft occurred. By the available devices the stent application is only promising, if the known exclusion criteria are strictly respected. Therefore a careful preinterventional assessment of the patient by different imaging modalities is necessary. As the available results up to now are preliminary and the durability of the devices has to be controlled, multicenter studies are required to improve the devices and observe their long- term success in the exclusion of abdominal aortic aneurysms.


1979 ◽  
Vol 42 (04) ◽  
pp. 1135-1140 ◽  
Author(s):  
G I C Ingram

SummaryThe International Reference Preparation of human brain thromboplastin coded 67/40 has been thought to show evidence of instability. The evidence is discussed and is not thought to be strong; but it is suggested that it would be wise to replace 67/40 with a new preparation of human brain, both for this reason and because 67/40 is in a form (like Thrombotest) in which few workers seem to use human brain. A �plain� preparation would be more appropriate; and a freeze-dried sample of BCT is recommended as the successor preparation. The opportunity should be taken also to replace the corresponding ox and rabbit preparations. In the collaborative study which would be required it would then be desirable to test in parallel the three old and the three new preparations. The relative sensitivities of the old preparations could be compared with those found in earlier studies to obtain further evidence on the stability of 67/40; if stability were confirmed, the new preparations should be calibrated against it, but if not, the new human material should receive a calibration constant of 1.0 and the new ox and rabbit materials calibrated against that.The types of evidence available for monitoring the long-term stability of a thromboplastin are discussed.


Author(s):  
Valery А. Gruzdev ◽  
◽  
Georgy V. Mosolov ◽  
Ekaterina A. Sabayda ◽  
◽  
...  

In order to determine the possibility of using the method of mathematical modeling for making long-term forecasts of channel deformations of trunk line underwater crossing (TLUC) through water obstacles, a methodology for performing and analyzing the results of mathematical modeling of channel deformations in the TLUC zone across the Kuban River is considered. Within the framework of the work, the following tasks were solved: 1) the format and composition of the initial data necessary for mathematical modeling were determined; 2) the procedure for assigning the boundaries of the computational domain of the model was considered, the computational domain was broken down into the computational grid, the zoning of the computational domain was performed by the value of the roughness coefficient; 3) the analysis of the results of modeling the water flow was carried out without taking the bottom deformations into account, as well as modeling the bottom deformations, the specifics of the verification and calibration calculations were determined to build a reliable mathematical model; 4) considered the possibility of using the method of mathematical modeling to check the stability of the bottom in the area of TLUC in the presence of man-made dumping or protective structure. It has been established that modeling the flow hydraulics and structure of currents, making short-term forecasts of local high-altitude reshaping of the bottom, determining the tendencies of erosion and accumulation of sediments upstream and downstream of protective structures are applicable for predicting channel deformations in the zone of the TLUC. In all these cases, it is mandatory to have materials from engineering-hydro-meteorological and engineering-geological surveys in an amount sufficient to compile a reliable mathematical model.


2018 ◽  
Vol 35 (4) ◽  
pp. 133-136
Author(s):  
R. N. Ibragimov

The article examines the impact of internal and external risks on the stability of the financial system of the Altai Territory. Classification of internal and external risks of decline, affecting the sustainable development of the financial system, is presented. A risk management strategy is proposed that will allow monitoring of risks, thereby these measures will help reduce the loss of financial stability and ensure the long-term development of the economy of the region.


CATENA ◽  
2021 ◽  
Vol 202 ◽  
pp. 105293
Author(s):  
Yang Wu ◽  
WenJing Chen ◽  
Wulan Entemake ◽  
Jie Wang ◽  
HongFei Liu ◽  
...  

Author(s):  
G Lacedelli ◽  
L Malavolta ◽  
L Borsato ◽  
G Piotto ◽  
D Nardiello ◽  
...  

Abstract Based on HARPS-N radial velocities (RVs) and TESS photometry, we present a full characterisation of the planetary system orbiting the late G dwarf After the identification of three transiting candidates by TESS, we discovered two additional external planets from RV analysis. RVs cannot confirm the outer TESS transiting candidate, which would also make the system dynamically unstable. We demonstrate that the two transits initially associated with this candidate are instead due to single transits of the two planets discovered using RVs. The four planets orbiting TOI-561 include an ultra-short period (USP) super-Earth (TOI-561 b) with period Pb = 0.45 d, mass Mb = 1.59 ± 0.36 M⊕ and radius Rb = 1.42 ± 0.07 R⊕, and three mini-Neptunes: TOI-561 c, with Pc = 10.78 d, Mc = 5.40 ± 0.98 M⊕, Rc = 2.88 ± 0.09 R⊕; TOI-561 d, with Pd = 25.6 d, Md = 11.9 ± 1.3 M⊕, Rd = 2.53 ± 0.13 R⊕; and TOI-561 e, with Pe = 77.2 d, Me = 16.0 ± 2.3 M⊕, Re = 2.67 ± 0.11 R⊕. Having a density of 3.0 ± 0.8 g cm−3, TOI-561 b is the lowest density USP planet known to date. Our N-body simulations confirm the stability of the system and predict a strong, anti-correlated, long-term transit time variation signal between planets d and e. The unusual density of the inner super-Earth and the dynamical interactions between the outer planets make TOI-561 an interesting follow-up target.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1877
Author(s):  
Kai-Hung Yang ◽  
Gabriella Lindberg ◽  
Bram Soliman ◽  
Khoon Lim ◽  
Tim Woodfield ◽  
...  

Recent advances highlight the potential of photopolymerizable allylated gelatin (GelAGE) as a versatile hydrogel with highly tailorable properties. It is, however, unknown how different photoinitiating system affects the stability, gelation kinetics and curing depth of GelAGE. In this study, sol fraction, mass swelling ratio, mechanical properties, rheological properties, and curing depth were evaluated as a function of time with three photo-initiating systems: Irgacure 2959 (Ig2959; 320–500 nm), lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP; 320–500 nm), and ruthenium/sodium persulfate (Ru/SPS; 400–500 nm). Results demonstrated that GelAGE precursory solutions mixed with either Ig2959 or LAP remained stable over time while the Ru/SPS system enabled the onset of controllable redox polymerization without irradiation during pre-incubation. Photo-polymerization using the Ru/SPS system was significantly faster (<5 s) compared to both Ig2959 (70 s) and LAP (50 s). Plus, The Ru/SPS system was capable of polymerizing a thick construct (8.88 ± 0.94 mm), while Ig2959 (1.62 ± 0.49 mm) initiated hydrogels displayed poor penetration depth with LAP (7.38 ± 2.13 mm) in between. These results thus support the use of the visible light based Ru/SPS photo-initiator for constructs requiring rapid gelation and a good curing depth while Ig2959 or LAP can be applied for photo-polymerization of GelAGE materials requiring long-term incubation prior to application if UV is not a concern.


2019 ◽  
Vol 268 ◽  
pp. 06002 ◽  
Author(s):  
Kensuke Seno ◽  
Ilhwan Park ◽  
Carlito Tabelin ◽  
Kagehiro Magaribuchi ◽  
Mayumi Ito ◽  
...  

Arsenopyrite (FeAsS) is the most common primary arsenic-sulfide mineral in nature, and its oxidation causes the release of toxic arsenic (As). To mitigate these problems, carrier-microencapsulation (CME), a technique that passivates sulfide minerals by covering their surfaces with a protective coating, has been developed. In the previous study of authors on CME, Al-catecholate complex significantly suppressed arsenopyrite oxidation via electron donating effects of the complex and the formation of an Al-oxyhydroxide coating. For the application of this technique to real tailings, however, further study should be carried out to elucidate long-term effectiveness of the coating to suppress arsenopyrite oxidation. This study investigates the stability of the coating formed on arsenopyrite by Al-based CME using weathering tests. The Al-oxyhydroxide coating suppressed arsenopyrite oxidation until about 50 days of the experiment, but after this, the amounts of oxidation products like dissolved S and As increased due to the gradual dissolution of the coating with time as a result of the low pH of leachate. This suggests that co-disposal of Al-based CME-treated arsenopyrite with minerals that have appropriate neutralization potentials, so that the pH is maintained at around 5 to 8 where Al-oxyhydroxide is stable.


Sign in / Sign up

Export Citation Format

Share Document