scholarly journals Method for calculation of radiative heat transfer in beds of spherical particles

Author(s):  
A. I. Malinouski

A new technique for implementing external (particle-to-wall) and particle-to-particle radiative heat transfer in discrete elements method (DEM) simulations is proposed. It is based on the idea that an expected view factor value depends on relevant local bed parameters (distance between particles, particle radius ratio, and local bed porosity). Calculation of average view factors via the formula requires considerably less computational effort than direct in situ integration, when this happens a reasonable average value and an overall accuracy comparable to direct calculation are provided. Both mono- and polydisperse mixtures of spherical opaque particles were considered. It was shown that using nondimensional parameters, a simple general dependence for an external radiative heat flux may be introduced. Exponential and linear fits were proposed for estimating the particle-particle radiative heat flux. The generalization of the obtained formulas for various bed porosities is proposed. The distribution of cumulative transferred heat flux across the particles up to a certain distance was found, and the recommendations regarding the choice of that parameter to achieve a desired accuracy were formulated. Also, the method to account for the particle emissivity was proposed on the basis of the empirical dependence between emissivity and radiative heat flux in porous materials. The proposed method satisfies all the requirements to become a standard implementation of radiative heat transfer calculation in DEM.

Author(s):  
David L. Damm ◽  
Andrei G. Fedorov

Thermo-mechanical failure of components in planar-type solid oxide fuel cells (SOFCs) depends strongly on the local temperature gradients at the interfaces of different materials. Therefore, it is of paramount importance to accurately predict the temperature fields within the stack, especially near the interfaces. Because of elevated operating temperatures (of the order of 1000 K or even higher), radiation heat transfer could become a dominant mode of heat transfer in the SOFCs. In this study, we extend our recent work on radiative effects in solid oxide fuel cells (Journal of Power Sources, Vol. 124, No. 2, pp. 453–458) by accounting for the spectral dependence of the radiative properties of the electrolyte material. The measurements of spectral radiative properties of the polycrystalline yttria-stabilized zirconia (YSZ) electrolyte we performed indicate that an optically thin approximation can be used for treatment of radiative heat transfer. To this end, the Schuster-Schwartzchild two-flux approximation is used to solve the radiative transfer equation (RTE) for the spectral radiative heat flux, which is then integrated over the entire spectrum using an N-band approximation to obtain the total heat flux due to thermal radiation. The divergence of the total radiative heat flux is then incorporated as a heat sink into a 3-D thermo-fluid model of a SOFC through the user-defined function utility in the commercial FLUENT CFD software. The results of sample calculations are reported and compared against the baseline cases when no radiation effects are included and when the spectrally gray approximation is used for treatment of radiative heat transfer.


2005 ◽  
Vol 2 (4) ◽  
pp. 258-262 ◽  
Author(s):  
David L. Damm ◽  
Andrei G. Fedorov

Thermo-mechanical failure of components in planar-type solid oxide fuel cells (SOFCs) depends strongly on the local temperature gradients at the interfaces of different materials. Therefore, it is of paramount importance to accurately predict the temperature fields within the stack, especially near the interfaces. Because of elevated operating temperatures (of the order of 1000K or even higher), radiation heat transfer could become a dominant mode of heat transfer in the SOFCs. In this study, we extend our recent work on radiative effects in solid oxide fuel cells [J. Power Sources, 124, No. 2, pp. 453–458] by accounting for the spectral dependence of the radiative properties of the electrolyte material. The measurements of spectral radiative properties of the polycrystalline yttria-stabilized zirconia electrolyte we performed indicate that an optically thin approximation can be used for treatment of radiative heat transfer. To this end, the Schuster–Schwartzchild two-flux approximation is used to solve the radiative transfer equation for the spectral radiative heat flux, which is then integrated over the entire spectrum using an N-band approximation to obtain the total heat flux due to thermal radiation. The divergence of the total radiative heat flux is then incorporated as a heat sink into a three-dimensional thermo-fluid model of a SOFC through the user-defined function utility in the commercial FLUENT computational fluid dynamics software. The results of sample calculations are reported and compared against the base line cases when no radiation effects are included and when the spectrally gray approximation is used for treatment of radiative heat transfer.


Author(s):  
Zhenhua Wang ◽  
Bengt Sunden ◽  
Shikui Dong ◽  
Zhihong He ◽  
Weihua Yang ◽  
...  

In designing industrial cylindrical furnaces, it is important to predict the radiative heat flux on the wall with high accuracy. In this study, we consider CO2 and H2O which have strong absorption in the infrared range. The absorption coefficients of the gases are calculated by using the statistical narrow band (SNB) model. The spectrum is divided into 15 bands to cover all the absorption regions of the two non-gray gases. The radiative transfer equation is solved by the finite volume method (FVM) in cylindrical coordinates. To make the FVM more accurate, we discretize the solid angle into 80 directions with the S8 approximation which is found to be both efficient and less time consuming. Based on the existing species and temperature fields, which were modeled by the FLUENT commercial code, the radiative heat transfer in a cylinder combustor is simulated by an in-house code. The results show that the radiative heat flux plays a dominant part of the heat flux to the wall. Meanwhile, when the gas is considered as nongray, the computational time is very huge. Therefore, a parallel algorithm is also applied to speed up the computing process.


2020 ◽  
Vol 142 (7) ◽  
Author(s):  
Xiaohu Wu ◽  
Ceji Fu ◽  
Zhuomin M. Zhang

Abstract The near-field radiative heat transfer (NFRHT) between two semi-infinite α-MoO3 biaxial crystals is investigated numerically based on the fluctuation–dissipation theorem combined with the modified 4 × 4 transfer matrix method in this paper. In the calculations, the near-field radiative heat flux (NFRHF) along each of the crystalline directions of α-MoO3 is obtained by controlling the orientation of the biaxial crystals. The results show that much larger heat flux than that between two semi-infinite hexagonal boron nitride can be achieved in the near-field regime, and the maximum heat flux is along the [001] crystalline direction. The mechanisms for the large radiative heat flux are explained as due to existence of hyperbolic phonon polaritons (HPPs) inside α-MoO3 and excitation of hyperbolic surface phonon polaritons (HSPhPs) at the vacuum/α-MoO3 interfaces. The effect of relative rotation between the emitter and the receiver on the heat flux is also investigated. It is found that the heat flux varies significantly with the relative rotation angle. The modulation contrast can be as large as two when the heat flux is along the [010] direction. We attribute the large modulation contrast mainly to the misalignment of HSPhPs and HPPs between the emitter and the receiver. Hence, the results obtained in this work may provide a promising way for manipulating near-field radiative heat transfer between anisotropic materials.


Author(s):  
Prabodh Panindre ◽  
Narges Susan Mousavi Kh. ◽  
Sunil Kumar

A Radioisotope Thermophotovoltaic (RTPV) Cell is a device used to convert heat energy into electrical energy. The electric generation capacity of RTPV cell depends on the radiative heat transfer between its two surfaces: the emitter surface heated by radioisotope thermal source and the receiving photovoltaic (PV) cell surface. The spectral directional surface properties and the surface temperatures of emitter and PV cell surface play important roles in quantifying the radiative heat flux of RTPV cell. This paper establishes the required analytic flat plate solutions to calculate the radiative heat flux of RTPV cell. The results obtained using the analytic solutions developed in this study have been qualitatively validated with the results of numerical simulations performed by a commercially available software. The effect of the surface temperatures and emitter surface coating on RTPV cell capacity is also studied and analyzed by both the methods. The results obtained from both the methods show that PV cell surface temperature has negligible effect on RTPV cell capacity as compared to the emitter surface temperature. Also, the radiative heat flux of RTPV cell with coated emitter is found to be significantly higher than that of RTPV cell with uncoated emitter surface. The analytical methods can be used to estimate the net radiative heat flux of RTPV cell for different surface temperatures and are independent of the dimensions of RTPV cell.


Author(s):  
Ceji Fu ◽  
Wenchang Tan

Radiative heat transfer between materials with dielectric coatings is numerically studied based on the fluctuational electrodynamics and the fluctuation-dissipation theorem. The results show that whereas a dielectric coating (SiC) enhances the far-field radiative heat transfer between two bulk metals, it will suppress the radiative heat transfer in the near-field and the suppression is only for the s-wave contribution. The total radiative heat flux continuously decreases as the coating thickness increases up to 1 μm. A further increase in the coating thickness will cause the total radiative heat flux to increase slightly before it saturates. In addition, a much smaller coating thickness than the coating’s skin depth is enough to significantly change the total radiative heat flux in the near-field region. On the contrary, a thin dielectric coating that supports surface polaritons can greatly enhance the radiative heat transfer between a metal and a dielectric in the case that the coating is on the metal. The large enhancement is due to surface polaritons excited on the two surfaces of the air gap boundaries.


2020 ◽  
Vol 34 (01) ◽  
pp. 1029-1036
Author(s):  
Hao Wu ◽  
Shuang Hao

Prediction of particle radiative heat transfer flux is an important task in the large discrete granular systems, such as pebble bed in power plants and industrial fluidized beds. For particle motion and packing, discrete element method (DEM) now is widely accepted as the excellent Lagrangian approach. For thermal radiation, traditional methods focus on calculating the obstructed view factor directly by numerical algorithms. The major challenge for the simulation is that the method is proven to be time-consuming and not feasible to be applied in the practical cases. In this work, we propose an analytical model to calculate macroscopic effective conductivity from particle packing structures Then, we develop a deep neural network (DNN) model used as a predictor of the complex view factor function. The DNN model is trained by a large dataset and the computational speed is greatly improved with good accuracy. It is feasible to perform real-time simulation with DNN model for radiative heat transfer in large pebble bed. The trained model also can be coupled with DEM and used to analyze efficiently the directional radiative conductivity, anisotropic factor and wall effect of the particle thermal radiation.


2008 ◽  
Author(s):  
Xiaojing Sun ◽  
Philip J. Smith

Accurate prediction of radiative heat transfer plays a key role in many high temperature applications, such as combustion devices and fires. Among various simulation methods, the Monte-Carlo Ray-Tracing (MCRT) has the advantage of solving the radiative transfer equation (RTE) for real gas mixtures with almost no approximations; however, it has disadvantage of requiring a large computational effort. The MCRT method can be carried out with either the Forward MCRT or the Reverse MCRT, depending on the direction of ray tracing. The RMCRT method has advantages over the FMCRT method in that it uses less memory, and in a domain decomposition parallelization strategy, it can explicitly obtain solutions for the domain of interest without the need for the solution on the entire domain.


Author(s):  
Hong Yin ◽  
Mingfei Li ◽  
Zhongran Chi ◽  
Jing Ren ◽  
Hongde Jiang

As the advanced heavy-duty gas turbine develops, the turbine inlet temperature and pressure have increased quite significantly to achieve better performance. The flow and heat transfer conditions of hot components including combustor and turbine become even more extreme than ever which need corresponding aerodynamic and cooling design development. The issue of combustor-turbine interaction has been proposed as a complicated research topic. Currently the hot streak, turbulence intensity, swirling flow, radiation are the four important factors for combustor-turbine interaction research according to the literature. Especially as the turbine inlet temperature increases, the radiative heat transfer plays a more and more important role. In this paper, a first stage vane is selected for the conjugate heat transfer simulation including radiative heat transfer since it is almost impossible to identify the radiative effect in experiment. The goal is to examine the effects of radiative heat flux and temperature increment caused by radiation. Several radiative factors including the inlet radiation, gas composition, vane surface emissivity and outlet reflection are investigated. The temperature distribution and heat flux enhancement under different conditions are compared, which can provide reference to the turbine heat transfer design. The general information of radiative effect can be summarized by quantitative analysis. Results show that the temperature increases obviously when considering the radiation effect as expected. However, these factors show distinct influence on the vane temperature distribution. The inlet radiation has significant impact on the vane leading edge and pressure side. Besides the gas radiation plays quite uniform on the whole vane surface.


Sign in / Sign up

Export Citation Format

Share Document