scholarly journals Surface Temperature and Heat Fluxes: Comparison between Natural Forest and Oil Palm Plantation in Jambi Province Using Surface Energy Balance Algorithm for Land (SEBAL)

Agromet ◽  
2019 ◽  
Vol 33 (2) ◽  
pp. 62-70
Author(s):  
Salis Deris Artikanur ◽  
Tania June

One of the leading commodities that has contributed a lot of income for Indonesia is oil palm. Oil palm plantations in Jambi are widespread, affecting the energy balance and surface temperature. This study aims to compare surface temperature and heat fluxes of oil palm plantation with different ages, how is the difference between forest and oil palm plantation, and to analyze the effect of oil palm planting on micro-climate change in Jambi. Using the Surface Energy Balance Algorithm for Land (SEBAL), it was found that in Jambi, young oil palm (2 years old) had higher surface temperatures of 2oC compared with adult oil palm (19 years old). While the surface temperature of the adult oil palm plant is slightly higher than natural forest that is 0.5oC. The increase of the age of oil palm followed by the increase of plant height (h), Canopy Cover (CC), and surface roughness which resulted in the increase of NDVI value and the cooling effect around the plantation so that the surface temperature (Ts) decreased as indicated by equation TS = 27.00 - 0.1581h - 0.0317CC and NDVI = 0.1335 + 0.00892h + 0.00096CC. The sensible heat flux (H) is affected by surface temperature, roughness length, friction velocity, and aerodynamic resistance of the plant. The highest H value is in the oil palm plantation near Brimob which is 282 W/m2. Latent heat flux (LE) is the remainder of the net radiation minus the flux of the soil and the flux feels. The highest LE value is in the oil palm plantation of Pompa Air Village which is 710 W/m2. Substantially ground heat flux (G) is affected by net radiation, NDVI, surface temperature, and albedo. The highest value of G is in PT Pisifera Persada oil palm plantation of 98 W/m2.Keywords: NDVI, net radiation, sensible heat flux, latent heat flux, Canopy Cover

2017 ◽  
Vol 21 (7) ◽  
pp. 3401-3415 ◽  
Author(s):  
Nobuhle P. Majozi ◽  
Chris M. Mannaerts ◽  
Abel Ramoelo ◽  
Renaud Mathieu ◽  
Alecia Nickless ◽  
...  

Abstract. Flux towers provide essential terrestrial climate, water, and radiation budget information needed for environmental monitoring and evaluation of climate change impacts on ecosystems and society in general. They are also intended for calibration and validation of satellite-based Earth observation and monitoring efforts, such as assessment of evapotranspiration from land and vegetation surfaces using surface energy balance approaches. In this paper, 15 years of Skukuza eddy covariance data, i.e. from 2000 to 2014, were analysed for surface energy balance closure (EBC) and partitioning. The surface energy balance closure was evaluated using the ordinary least squares regression (OLS) of turbulent energy fluxes (sensible (H) and latent heat (LE)) against available energy (net radiation (Rn) less soil heat (G)), and the energy balance ratio (EBR). Partitioning of the surface energy during the wet and dry seasons was also investigated, as well as how it is affected by atmospheric vapour pressure deficit (VPD), and net radiation. After filtering years with low-quality data (2004–2008), our results show an overall mean EBR of 0.93. Seasonal variations of EBR also showed the wet season with 1.17 and spring (1.02) being closest to unity, with the dry season (0.70) having the highest imbalance. Nocturnal surface energy closure was very low at 0.26, and this was linked to low friction velocity during night-time, with results showing an increase in closure with increase in friction velocity. The energy partition analysis showed that sensible heat flux is the dominant portion of net radiation, especially between March and October, followed by latent heat flux, and lastly the soil heat flux, and during the wet season where latent heat flux dominated sensible heat flux. An increase in net radiation was characterized by an increase in both LE and H, with LE showing a higher rate of increase than H in the wet season, and the reverse happening during the dry season. An increase in VPD is correlated with a decrease in LE and increase in H during the wet season, and an increase in both fluxes during the dry season.


2011 ◽  
Vol 5 (1) ◽  
pp. 151-171 ◽  
Author(s):  
M. Langer ◽  
S. Westermann ◽  
S. Muster ◽  
K. Piel ◽  
J. Boike

Abstract. In this article, we present a study on the surface energy balance of a polygonal tundra landscape in northeast Siberia. The study was performed during half-year periods from April to September in each of 2007 and 2008. The surface energy balance is obtained from independent measurements of the net radiation, the turbulent heat fluxes, and the ground heat flux at several sites. Short-wave radiation is the dominant factor controlling the magnitude of all the other components of the surface energy balance during the entire observation period. About 50% of the available net radiation is consumed by the latent heat flux, while the sensible and the ground heat flux are each around 20 to 30%. The ground heat flux is mainly consumed by active layer thawing. About 60% of the energy storage in the ground is attributed to the phase change of soil water. The remainder is used for soil warming down to a depth of 15 m. In particular, the controlling factors for the surface energy partitioning are snow cover, cloud cover, and the temperature gradient in the soil. The thin snow cover melts within a few days, during which the equivalent of about 20% of the snow-water evaporates or sublimates. Surface temperature differences of the heterogeneous landscape indicate spatial variabilities of sensible and latent heat fluxes, which are verified by measurements. However, spatial differences in the partitioning between sensible and latent heat flux are only measured during conditions of high radiative forcing, which only occur occasionally.


2017 ◽  
Author(s):  
Nobuhle P. Majozi ◽  
Chris M. Mannaerts ◽  
Abel Ramoelo ◽  
Renaud Mathieu ◽  
Alecia Nickless ◽  
...  

Abstract. Flux towers provide essential terrestrial climate, water and radiation budget information needed for environmental monitoring and evaluation of climate change impacts on ecosystems and society in general. They are also intended for calibration and validation of satellite-based earth observation and monitoring efforts, such as assessment of evapotranspiration from land and vegetation surfaces using surface energy balance approaches. In this paper, 15 years of Skukuza eddy covariance data, i.e. from 2000 to 2014, were analysed for surface energy balance closure (EBC) and partitioning. The surface energy balance closure was evaluated using the ordinary least squares regression (OLS) of turbulent energy fluxes (sensible (H) and latent heat (LE)) against available energy (net radiation (Rn) less soil heat (G)), and the energy balance ratio (EBR). Partitioning of the surface energy during the wet and dry seasons was investigated, as well as how it is affected by atmospheric vapor pressure deficit (VPD), and net radiation. After filtering years with bad data (2004–2008), our results show an overall mean EBR of 0.93. Seasonal variations of EBR also showed summer (0.98) and spring (1.02) were closest to unity, with winter (0.70) having the least closure. Nocturnal surface energy closure was very low at 0.11, and this was linked to low friction velocity during night-time, with results showing an increase in closure with increase in friction velocity. The surface energy partitioning of this savanna ecosystem showed that sensible heat flux dominated the energy partitioning between March and October, followed by latent heat flux, and lastly the soil heat flux, and during the wet season where latent heat flux dominated the sensible heat flux. An increase in net radiation was characterized by an increase in both LE and H, with LE showing a higher rate of increase than H in the wet season, and the reverse happening during the dry season. An increase in VPD is characterized by a decrease in LE and increase in H during the wet season, and an increase of both fluxes during the dry season.


2014 ◽  
Vol 8 (1) ◽  
pp. 125-135 ◽  
Author(s):  
J. M. van Wessem ◽  
C. H. Reijmer ◽  
J. T. M. Lenaerts ◽  
W. J. van de Berg ◽  
M. R. van den Broeke ◽  
...  

Abstract. In this study the effects of changes in the physics package of the regional atmospheric climate model RACMO2 on the modelled surface energy balance, near-surface temperature and wind speed of Antarctica are presented. The physics package update primarily consists of an improved turbulent and radiative flux scheme and a revised cloud scheme that includes a parameterisation for ice cloud super-saturation. The ice cloud super-saturation has led to more moisture being transported onto the continent, resulting in more and optically thicker clouds and more downward long-wave radiation. Overall, the updated model better represents the surface energy balance, based on a comparison with >750 months of data from nine automatic weather stations located in East Antarctica. Especially the representation of the turbulent sensible heat flux and net long-wave radiative flux has improved with a decrease in biases of up to 40%. As a result, modelled surface temperatures have increased and the bias, when compared to 10 m snow temperatures from 64 ice-core observations, has decreased from −2.3 K to −1.3 K. The weaker surface temperature inversion consequently improves the representation of the sensible heat flux, whereas wind speed biases remain unchanged. However, significant model biases remain, partly because RACMO2 at a resolution of 27 km is unable to resolve steep topography.


2019 ◽  
Vol 23 (12) ◽  
pp. 5033-5058
Author(s):  
Guillaume Bigeard ◽  
Benoit Coudert ◽  
Jonas Chirouze ◽  
Salah Er-Raki ◽  
Gilles Boulet ◽  
...  

Abstract. The heterogeneity of Agroecosystems, in terms of hydric conditions, crop types and states, and meteorological forcing, is difficult to characterize precisely at the field scale over an agricultural landscape. This study aims to perform a sensitivity study with respect to the uncertain model inputs of two classical approaches used to map the evapotranspiration of agroecosystems: (1) a surface energy balance (SEB) model, the Two-Source Energy Balance (TSEB) model, forced with thermal infrared (TIR) data as a proxy for the crop hydric conditions, and (2) a soil–vegetation–atmosphere transfer (SVAT) model, the SEtHyS model, where hydric conditions are computed from a soil water budget. To this end, the models' skill was compared using a large and unique in situ database covering different crops and climate conditions, which was acquired over three experimental sites in southern France and Morocco. On average, the models provide 30 min estimations of latent heat flux (LE) with a RMSE of around 55 W m−2 for TSEB and 47 W m−2 for SEtHyS, and estimations of sensible heat flux (H) with a RMSE of around 29 W m−2 for TSEB and 38 W m−2 for SEtHyS. A sensitivity analysis based on realistic errors aimed to estimate the potential decrease in performance induced by the spatialization process. For the SVAT model, the multi-objective calibration iterative procedure (MCIP) is used to determine and test different sets of parameters. TSEB is run with only one set of parameters and provides acceptable performance for all crop stages apart from the early growing season (LAI < 0.2 m2 m−2) and when hydric stress occurs. An in-depth study on the Priestley–Taylor key parameter highlights its marked diurnal cycle and the need to adjust its value to improve flux partitioning between the sensible and latent heat fluxes (1.5 and 1.25 for France and Morocco, respectively). Optimal values of 1.8–2 were highlighted under cloudy conditions, which is of particular interest due to the emergence of low-altitude drone acquisition. Under developed vegetation (LAI > 0.8 m2 m−2) and unstressed conditions, using sets of parameters that only differentiate crop types is a valuable trade-off for SEtHyS. This study provides some scientific elements regarding the joint use of both approaches and TIR imagery, via the development of new data assimilation and calibration strategies.


2019 ◽  
Vol 13 (8) ◽  
pp. 2203-2219 ◽  
Author(s):  
Tobias Linhardt ◽  
Joseph S. Levy ◽  
Christoph K. Thomas

Abstract. The hydrologic cycle in the Antarctic McMurdo Dry Valleys (MDV) is mainly controlled by surface energy balance. Water tracks are channel-shaped high-moisture zones in the active layer of permafrost soils and are important solute and water pathways in the MDV. We evaluated the hypothesis that water tracks alter the surface energy balance in this dry, cold, and ice-sheet-free environment during summer warming and may therefore be an increasingly important hydrologic feature in the MDV in the face of landscape response to climate change. The surface energy balance was measured for one water track and two off-track reference locations in Taylor Valley over 26 d of the Antarctic summer of 2012–2013. Turbulent atmospheric fluxes of sensible heat and evaporation were observed using the eddy-covariance method in combination with flux footprint modeling, which was the first application of this technique in the MDV. Soil heat fluxes were analyzed by measuring the heat storage change in the thawed layer and approximating soil heat flux at ice table depth by surface energy balance residuals. For both water track and reference locations over 50 % of net radiation was transferred to sensible heat exchange, about 30 % to melting of the seasonally thawed layer, and the remainder to evaporation. The net energy flux in the thawed layer was zero. For the water track location, evaporation was increased by a factor of 3.0 relative to the reference locations, ground heat fluxes by 1.4, and net radiation by 1.1, while sensible heat fluxes were reduced down to 0.7. Expecting a positive snow and ground ice melt response to climate change in the MDV, we entertained a realistic climate change response scenario in which a doubling of the land cover fraction of water tracks increases the evaporation from soil surfaces in lower Taylor Valley in summer by 6 % to 0.36 mm d−1. Possible climate change pathways leading to this change in landscape are discussed. Considering our results, an expansion of water track area would make new soil habitats accessible, alter soil habitat suitability, and possibly increase biological activity in the MDV. In summary, we show that the surface energy balance of water tracks distinctly differs from that of the dominant dry soils in polar deserts. With an expected increase in area covered by water tracks, our findings have implications for hydrology and soil ecosystems across terrestrial Antarctica.


Atmosphere ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 260 ◽  
Author(s):  
Xingbing Zhao ◽  
Changwei Liu ◽  
Nan Yang ◽  
Yubin Li

Land surface process observations in the western Tibet Plateau (TP) are limited because of the abominable natural conditions. During the field campaign of the Third Tibetan Plateau Atmospheric Scientific Experiment (TIPEX III), continuous measurements on the four radiation fluxes (downward/upward short/long-wave radiations), three heat fluxes (turbulent sensible/latent heat fluxes and soil heat flux) and also CO2 flux were collected from June 2015 through January 2017 at Shiquanhe (32.50° N, 80.08° E, 4279.3 m above sea level) in the western Tibetan Plateau. Diurnal and seasonal variation characteristics of these surface energy and CO2 fluxes were presented and analyzed in this study. Results show that (1) diurnal variations of the seven energy fluxes were found with different magnitudes, (2) seasonal variations appeared for the seven energy fluxes with their maxima in summer and minima in winter, (3) diurnal and seasonal variations of respiration caused by the biological and chemical processes within the soil were found, and absorption (release) of CO2 around 0.1 mg m−2 s−1 occurred at afternoon of summer (midnight of winter), but the absorption and release generally canceled out from a yearly perspective; and (4) the surface energy balance ratio went through both diurnal and seasonal cycles, and in summer months the slopes of the fitting curve were above 0.6, but in winter months they were around 0.5. Comparing the results of the Shiquanhe site with the central and eastern TP sites, it was found that (1) they all generally had similar seasonal and diurnal variations of the fluxes, (2) caused by the low rainfall quantity, latent heat flux at Shiquanhe (daily daytime mean always less than 90 W m−2) was distinctively smaller than at the central and eastern TP sites during the wet season (generally larger than 100 W m−2), and (3) affected by various factors, the residual energy was comparatively larger at Shiquanhe, which led to a small surface energy balance ratio.


2018 ◽  
Vol 33 (3) ◽  
pp. 537-546 ◽  
Author(s):  
Paulo Jorge de Oliveira Ponte de Souza ◽  
Juliana Chagas Rodrigues ◽  
Adriano Marlisom Leão de Sousa ◽  
Everaldo Barreiros de Souza

Abstract This study aimed to evaluate the diurnal energy balance during the reproductive stage of two growing seasons of a mango orchard in the northeast of Pará, Brazil. Therefore, a micrometeorological tower was installed and instrumented, in the center of the experimental area, to monitor meteorological variables, besides the phenological evaluation of the mango orchard, which was carried out during growing seasons of 2010-2011 (October 2010 to January 2011) and of 2011-2012 (September 2011 to January 2012). The energy balance was obtained by the bowen ration technique, and the available energy partitioned into heat flux to the ground, sensible heat and latent heat. The amount of rainfall was crucial to the partition of the net radiation in the energy balance components. It provided the variation in the consumption of available energy between 69% and 78% as latent heat flux, and between 23% and 32% as sensible heat flux. The heat flux to the ground was small, representing less than 1% of the net radiation, showing that the mango orchard exhibits good soil cover preventing large variations in soil heating.


2005 ◽  
Vol 6 (6) ◽  
pp. 941-953 ◽  
Author(s):  
Wade T. Crow ◽  
Fuqin Li ◽  
William P. Kustas

Abstract The treatment of aerodynamic surface temperature in soil–vegetation–atmosphere transfer (SVAT) models can be used to classify approaches into two broad categories. The first category contains models utilizing remote sensing (RS) observations of surface radiometric temperature to estimate aerodynamic surface temperature and solve the terrestrial energy balance. The second category contains combined water and energy balance (WEB) approaches that simultaneously solve for surface temperature and energy fluxes based on observations of incoming radiation, precipitation, and micrometeorological variables. To date, few studies have focused on cross comparing model predictions from each category. Land surface and remote sensing datasets collected during the 2002 Soil Moisture–Atmosphere Coupling Experiment (SMACEX) provide an opportunity to evaluate and intercompare spatially distributed surface energy balance models. Intercomparison results presented here focus on the ability of a WEB-SVAT approach [the TOPmodel-based Land–Atmosphere Transfer Scheme (TOPLATS)] and an RS-SVAT approach [the Two-Source Energy Balance (TSEB) model] to accurately predict patterns of turbulent energy fluxes observed during SMACEX. During the experiment, TOPLATS and TSEB latent heat flux predictions match flux tower observations with root-mean-square (rms) accuracies of 67 and 63 W m−2, respectively. TSEB predictions of sensible heat flux are significantly more accurate with an rms accuracy of 22 versus 46 W m−2 for TOPLATS. The intercomparison of flux predictions from each model suggests that modeling errors for each approach are sufficiently independent and that opportunities exist for improving the performance of both models via data assimilation and model calibration techniques that integrate RS- and WEB-SVAT energy flux predictions.


2010 ◽  
Vol 49 (3) ◽  
pp. 346-362 ◽  
Author(s):  
A. Lemonsu ◽  
S. Bélair ◽  
J. Mailhot ◽  
S. Leroyer

Abstract Using the Montreal Urban Snow Experiment (MUSE) 2005 database, surface radiation and energy exchanges are simulated in offline mode with the Town Energy Balance (TEB) and the Interactions between Soil, Biosphere, and Atmosphere (ISBA) parameterizations over a heavily populated residential area of Montreal, Quebec, Canada, during the winter–spring transition period (from March to April 2005). The comparison of simulations with flux measurements indicates that the system performs well when roads and alleys are snow covered. In contrast, the storage heat flux is largely underestimated in favor of the sensible heat flux at the end of the period when snow is melted. An evaluation and an improvement of TEB’s snow parameterization have also been conducted by using snow property measurements taken during intensive observational periods. Snow density, depth, and albedo are correctly simulated by TEB for alleys where snow cover is relatively homogeneous. Results are not as good for the evolution of snow on roads, which is more challenging because of spatial and temporal variability related to human activity. An analysis of the residual term of the energy budget—including contributions of snowmelt, heat storage, and anthropogenic heat—is performed by using modeling results and observations. It is found that snowmelt and anthropogenic heat fluxes are reasonably well represented by TEB–ISBA, whereas storage heat flux is underestimated.


Sign in / Sign up

Export Citation Format

Share Document