scholarly journals Effect of Bacterial Inoculation and Levels of High-Moisture Maize Silage Particle Size on Consumption, Digestibility, Rumen Parameters and Feed Intake Behavior in Sheep

2020 ◽  
Vol 11 (27) ◽  
pp. 35-45
Author(s):  
Mohsen Dehghani ◽  
Mohammad Mehdi Sharifi Hosseini ◽  
Omid Dayani ◽  
Ali Madahyan ◽  
◽  
...  
2009 ◽  
Vol 49 (8) ◽  
pp. 704 ◽  
Author(s):  
A. M. Amerah ◽  
V. Ravindran

The aim of the present experiment was to examine the interaction between particle size and microbial phytase supplementation on the performance, nutrient utilisation and digestive tract development of broiler starters fed maize-based diets. The experimental design was a 2 × 2 factorial arrangement of treatments evaluating two maize particle sizes (medium and coarse) and two levels of phytase supplementation (without or with 500 phytase units/kg diet). The two particle sizes were achieved by grinding the whole maize in a hammer mill to pass through 3- and 7-mm screens, respectively. Broiler starter diets, based on maize and soybean meal, were formulated to meet recommended requirements for major nutrients, except phosphorus. Each of the four diets was fed ad libitum to six pens of eight male broilers each, from day 1 to day 21 post-hatching. Phytase supplementation increased (P < 0.001) the feed intake and weight gain, and lowered (P < 0.05) feed per gain in both medium and coarse particle size diets. Coarse grinding improved (P < 0.05) weight gain, but had no effect (P > 0.05) on feed intake and feed per gain. No interactions (P > 0.05) between phytase supplementation and particle size were observed for any of the performance parameters. Phytase supplementation increased (P < 0.001) ileal phosphorus digestibility and toe ash content of birds fed the medium particle size diet, but had no effect in those fed the coarse particle size diet. Apparent metabolisable energy and ileal digestibility of calcium and nitrogen were not influenced by particle size or phytase supplementation. The present findings suggest that the effectiveness of supplemental phytase on broiler performance is not influenced by the particle size of maize.


2015 ◽  
Vol 35 (5) ◽  
pp. 951-958 ◽  
Author(s):  
Deny Oliva-Merencio ◽  
Ileana Pereda-Reyes ◽  
Ulrike Schimpf ◽  
Stefan Koehler ◽  
Ariovaldo J. da Silva

ABSTRACT This paper studied the effect of adding an enzyme (ellulose) on anaerobic digestion of maize silage. We compared materials at chopping lengths of 8 mm (MSL), 4mm (MSS) and natural size (Ms) under a mesophilic and discontinuous operation (batch process). Hence, we found the process to be significantly influenced by particle size. Moreover, the ellulose addition did not significantly impact biogas production after a 35-day digestion period. Ms and MSS displayed an improved response to all variables when compared with MSL and MSL+C, with significant differences. Studies on the refractory fraction at infinite time (R0) have demonstrated that the lowest values correspond to Ms and MSS (0.122 and 0.155, respectively). The Kinetic approach and the Ultimate Biodegradability test are useful tools to evaluate the effect of the addition of an enzyme to the anaerobic process.


2011 ◽  
Vol 10 (3) ◽  
pp. 238-240 ◽  
Author(s):  
V. Tufarelli ◽  
R.U. Khan ◽  
V. Laudadio

2020 ◽  
Vol 87 (3) ◽  
pp. 334-340
Author(s):  
Elisa Manzocchi ◽  
Werner Hengartner ◽  
Michael Kreuzer ◽  
Katrin Giller

AbstractThis research paper addresses the hypotheses (1) that milk produced from hay-fed cows differs from that of silage-fed cows and (2) that silage type has an important impact, too. Four diets differing in forage type but with equal estimated milk production potential and a forage:concentrate ratio of 0.85 : 0.15 were compared regarding their effect on feed intake, milk yield and milk properties. The forages tested were hay, grass silage, conventional short-chopped and long-chopped maize silage subjected to a novel processing technology (Shredlage®). Twenty-four dairy cows were fed two of the four diets in two consecutive runs in an incomplete (4 × 2) Latin-square design (n = 12 per diet). Each experimental period lasted 22 d, with 12 d of adaptation and 10 d of sampling. During sampling, feed intake and milk yield were recorded daily, milk composition and coagulation properties were determined four times. The composition of the diet ingredients was analysed weekly. Data were analysed with a mixed model considering feed, period and their interaction as fixed effects. Stage of lactation, milk yield and milk composition from the pre-experimental period were used as covariates in the model. Dry matter intake was lower with the long-chopped processed maize silage compared to the other three groups. There were some diet differences in intakes of net energy for lactation and absorbable protein in the duodenum, but this did not result in changes in milk yield. The milk fat content was higher with the grassland-based diets compared to the maize silage diets. No treatment effect on milk acidity and rennet coagulation properties was observed. In conclusion, there were no indications for specific physico-chemical properties of milk from a hay-based diet, and maize processing technology was not of large effect either. Future investigations should focus on sensory differentiation of the milk produced with different forages.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Fuhai Zhang ◽  
Zhengrong Liu ◽  
Yu Chen ◽  
Liang Chen ◽  
Xianwen Huang ◽  
...  

Embedding soft soil particles with high moisture content into miscellaneous fill with large pores under overlying loads is easy. It produces mutually embedded settlement, which is an important component of total foundation settlement during calculation. In this study, influences of interface friction on mutually embedded settlement, particle displacement, pore and contact characteristics, and mutually embedded development laws were analysed by using the particle flow method. Research results demonstrate that mutually embedded settlement decreases first and then stabilizes with the increase in contact friction factor and continuously attenuates with normal stiffness. Under the loads, particles at the contact surface move downward and squeeze surrounding particles laterally, thus causing particles to slide at the miscellaneous fill channel upward. Consequently, porosity of particles in miscellaneous fill channel increases. The force chain at the contact surface inclines around, while that at the miscellaneous fill channel presents approximately horizontal distribution. Compared with 35 and 45 mm particles, the mutually embedded settlement of 15 and 25 mm particles is slightly increased with loads. Particle size can relieve the influences of loads on mutual embedding. When particle size is larger than 25 mm, loads can significantly influence mutual embedding. Research conclusions can provide a reasonable theoretical foundation for calculating or predicting settlement of miscellaneous fill-soft soil composite foundation.


2019 ◽  
Vol 102 (10) ◽  
pp. 8839-8849 ◽  
Author(s):  
Andreas Haselmann ◽  
Katharina Zehetgruber ◽  
Birgit Fuerst-Waltl ◽  
Werner Zollitsch ◽  
Wilhelm Knaus ◽  
...  

2003 ◽  
Vol 89 (1) ◽  
pp. 97-103 ◽  
Author(s):  
C. A. Rodríguez ◽  
J. González ◽  
M. R. Alvir ◽  
R. Redondo ◽  
C. Cajarville

The present study was conducted to determine the effect of feed intake on the composition of the rumen contents of sheep and on their bacterial densities. Whole rumen contents were sampled after a period of continuous inter-rumen infusion of15NH3from four rumen-cannulated wethers successively fed on a hay–concentrate diet (2:1, / on a DM basis) at two rates of feed intake: 40 and 80 g D/g body weight0·75. Total weight and chemical composition of rumen contents, as well as the distribution by size and chemical composition of particles, were determined. The populations of bacteria associated with the liquid (liquid-associated bacteria, LAB) and solid (solid-associated bacteria, SAB) fractions of rumen digesta and the distribution of SAB according to feed particle size were also examined. The greater feed intake caused an increase in the mass of the rumen contents, while its chemical composition did not change, except for a higher content of organic matter (P=0·023). The distribution of feed particles by size was similar at both levels of intake. The concentrations of neutral- and acid-detergent fibre in feed particles decreased and those of total, dietary, and microbial N increased, both with a quadratic response (P=0·001), as particle size decreased. The proportion of LAB in the microbial biomass of rumen digesta reached only 8·0 %. This proportion and the density of LAB were unaffected by the level of feed intake, whereas an apparent reduction (10·4 %) occurred with the SAB biomass in whole rumen contents. A systematic, but not significant, reduction (mean value 11·9 %) in the level of microbial colonisation in the different particle fractions with the increase of feed intake was also observed.


Sign in / Sign up

Export Citation Format

Share Document