scholarly journals Prospects of 3D Bioprinting as a Possible Treatment for Cancer Cachexia

2021 ◽  
Vol 12 (4) ◽  
pp. em00783
Author(s):  
Yusha Araf ◽  
Mustafa Galib ◽  
Iftekhar Bin Naser ◽  
Salman Khan Promon
Author(s):  
Mustafa Galib ◽  
Yusha Araf ◽  
Iftekhar Bin Naser ◽  
Salman Khan Promon

Cancer cachexia is a multifactorial syndrome that is identified by ongoing muscle atrophy, along with functional impairment, anorexia, weakness, fatigue, anemia, reduced tolerance to antitumor treatments. Thus, reducing the patients’ quality of life. Cachexia alone causes about 22-25% of cancer deaths. This review covers the symptoms, mediators, available treatment, and prospects of 3D bioprinting for cancer cachexia. Studies about cachexia have shown several factors that drive this disease – protein breakdown, inflammatory cytokines activation, and mitochondrial alteration. Even with proper nutrition, physical exercises, anti-inflammatory agents, chemotherapy, and grafting attempts, standard treatment has been unsuccessful for cachexia. But the use of 3D bioprinting shows much promise compared to conventional methods by attempting to fabricate 3D constructs mimicking the native muscle tissues. In this review, some 3D bioprinting techniques with their advantages and drawbacks, along with their achievements and challenges in in-vivo applications have been discussed. Constructs with neural integration or muscle-tendon units aim to repair muscle atrophy. But it is still difficult to properly bio-print these complex muscles. Although progress can be made by developing new bio-inks or 3D printers to fabricate high-resolution constructs. Using secondary data, this review study shows prospects of why 3D bioprinting can be a good alternate approach to fight cachexia.


2012 ◽  
Vol 17 (3) ◽  
pp. 285-292 ◽  
Author(s):  
Matthew Maddocks ◽  
Andrew J. Murton ◽  
Andrew Wilcock

2019 ◽  
Vol 16 (3) ◽  
pp. 342-368 ◽  
Author(s):  
Ramandeep Kaur ◽  
Yagyesh Kapoor ◽  
Sundeep K. Manjal ◽  
Ravindra K. Rawal ◽  
Kapil Kumar

The furo [2,3-b] indoline ring system is one of the most important structural units in various natural products. It has been known to have inherent biological activities and is utilized as a synthetic target for a number of natural compounds; therefore, this has contributed to a great demand for the growth of synthetic methods for this ring system. Most important compounds with furoindoline ring system are physovenine, madindoline A and B and makomotindoline etc. These compounds are well known to exhibit biological activity against different diseases such as glaucoma, cancer, cachexia, Castleman’s disease, rheumatoid arthritis, etc. The current article focuses on various synthetic approaches for furoindoline containing compounds and essential furoindoline moiety, such as oxindole-5-O-tetrahydropyranyl ether route etc., and various other diastereoand enantio- controlled approach in a very concise way.


Sign in / Sign up

Export Citation Format

Share Document