Experimental Release of Juvenile Sea Urchins (Paracentrotus lividus) in Exploited Sites along the French Mediterranean Coast

2015 ◽  
Vol 34 (2) ◽  
pp. 555-563 ◽  
Author(s):  
Sylvain Couvray ◽  
Thomas Miard ◽  
Robert Bunet ◽  
Yvan Martin ◽  
Joel-Paul Grillasca ◽  
...  
2021 ◽  
Vol 22 (13) ◽  
pp. 6674
Author(s):  
Luisa Albarano ◽  
Valerio Zupo ◽  
Davide Caramiello ◽  
Maria Toscanesi ◽  
Marco Trifuoggi ◽  
...  

Sediment pollution is a major issue in coastal areas, potentially endangering human health and the marine environments. We investigated the short-term sublethal effects of sediments contaminated with polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) on the sea urchin Paracentrotus lividus for two months. Spiking occurred at concentrations below threshold limit values permitted by the law (TLVPAHs = 900 µg/L, TLVPCBs = 8 µg/L, Legislative Italian Decree 173/2016). A multi-endpoint approach was adopted, considering both adults (mortality, bioaccumulation and gonadal index) and embryos (embryotoxicity, genotoxicity and de novo transcriptome assembly). The slight concentrations of PAHs and PCBs added to the mesocosms were observed to readily compartmentalize in adults, resulting below the detection limits just one week after their addition. Reconstructed sediment and seawater, as negative controls, did not affect sea urchins. PAH- and PCB-spiked mesocosms were observed to impair P. lividus at various endpoints, including bioaccumulation and embryo development (mainly PAHs) and genotoxicity (PAHs and PCBs). In particular, genotoxicity tests revealed that PAHs and PCBs affected the development of P. lividus embryos deriving from exposed adults. Negative effects were also detected by generating a de novo transcriptome assembly and its annotation, as well as by real-time qPCR performed to identify genes differentially expressed in adults exposed to the two contaminants. The effects on sea urchins (both adults and embryos) at background concentrations of PAHs and PCBs below TLV suggest a need for further investigations on the impact of slight concentrations of such contaminants on marine biota.


2014 ◽  
Vol 15 (3) ◽  
pp. 475 ◽  
Author(s):  
S. GARCIA-SANZ ◽  
P. G. NAVARRO ◽  
F. TUYA

Despite sea-urchins can play an important role affecting the community structure of subtidal bottoms, factors controlling the dynamics of sea-urchin populations are still poorly understood. We assessed the seasonal variation in recruitment of three sea-urchin species (Diadema africanum, Paracentrotus lividus and Arbacia lixula) at Gran Canaria Island (eastern Atlantic) via monthly deployment of artificial collectors throughout an entire annual cycle on each of four adjacent habitat patches (seagrasses, sandy patches, ‘urchin-grazed’ barrens and macroalgal-dominated beds) within a shallow coastal landscape. Paracentrotus lividus and A. lixula had exclusively one main recruitment peak in late winter-spring. Diadema africanum recruitment was also seasonal, but recruits appeared in late summer-autumn, particularly on ‘urchin-grazed’ barrens with large abundances of adult conspecifics. In conclusion, this study has demonstrated non-overlapping seasonal recruitment patterns of the less abundant species (P. lividus and A. lixula) with the most conspicuous species (D. africanum) in the study area.


Author(s):  
Iryna Yakovenko ◽  
Asaf Donnyo ◽  
Or Ioscovich ◽  
Benyamin Rosental ◽  
Matan Oren

Sea urchins are long-living invertebrates with a complex immune system which includes extended families of immune receptors. A central immune gene family in the sea urchins encodes for the Transformer (Trf) proteins. The Trf family was so far studied mainly in the purple sea urchin Strongylocentrotus purpuratus. In this study, we explored this protein family in the Mediterranean Sea urchin Paracentrotus lividus. The PlTrf genes and predicted proteins were found to be highly diverse and showed a typical Trf size range and structure. We found that P. lividus coelomocytes and hemolymph contain different PlTrf protein repertoires with a shared subset which specifically bind E. coli bacteria. Using FACS, we identified five different P. lividus coelomocyte sub-populations with cell surface Trf protein expression. The relative abundance of the Trf-positive cells sharply increased following immune challenge with E. coli bacteria, but not following challenge with LPS or sea urchin pathogen V. penaeicida. Finally, we demonstrated that the phagocytosis of E. coli bacteria by P. lividus phagocytes is mediated through the hemolymph and is inhibited by blocking Trf activity with anti-Trf antibodies. Together, our results suggest collaboration between cellular and humoral Trf-mediated effector arms in the P. lividus specific immune response to pathogens.


Dose-Response ◽  
2008 ◽  
Vol 6 (4) ◽  
pp. dose-response.0 ◽  
Author(s):  
Giovanni Pagano ◽  
Giuseppe Castello ◽  
Marialuisa Gallo ◽  
Ilaria Borriello ◽  
Marco Guida

A series of studies investigated the toxicities of tannery-derived complex mixtures, i.e. vegetable tannin (VT) from Acacia sp. or phenol-based synthetic tannin (ST), and wastewater from tannin-based vs. chromium-based tanneries. Toxicity was evaluated by multiple bioassays including developmental defects and loss of fertilization rate in sea urchin embryos and sperm ( Paracentrotus lividus and Sphaerechinus granularis), and algal growth inhibition ( Dunaliella tertiolecta and Selenastrum capricornutum). Both VT and ST water extracts resulted in hormetic effects at concentrations ranging 0.1 to 0.3%, and toxicity at levels ≥1%, both in sea urchin embryo and sperm, and in algal growth bioassays. When comparing tannin-based tannery wastewater (TTW) vs. chromium-based tannery effluent (CTE), a hormesis to toxicity trend was observed for TTW both in terms of developmental and fertilization toxicity in sea urchins, and in algal growth inhibition, with hormetic effects at 0.1 to 0.2% TTW, and toxicity at TTW levels ≥1%. Unlike TTW, CTE showed a monotonic toxicity increase from the lowest tested level (0.1%) and CTE toxicity at higher levels was significantly more severe than TTW-induced toxicity. The results support the view that leather production utilizing tannins might be regarded as a more environmentally friendly procedure than chromium-based tanning process.


2018 ◽  
Vol 62 (4) ◽  
pp. 209-220 ◽  
Author(s):  
Nadia Ruocco ◽  
Valerio Zupo ◽  
Davide Caramiello ◽  
Francesca Glaviano ◽  
Gianluca Polese ◽  
...  

2015 ◽  
Vol 73 (3) ◽  
pp. 727-738 ◽  
Author(s):  
Marie Collard ◽  
Samuel P. S. Rastrick ◽  
Piero Calosi ◽  
Yoann Demolder ◽  
Jean Dille ◽  
...  

Abstract Increased atmospheric CO2 concentration is leading to changes in the carbonate chemistry and the temperature of the ocean. The impact of these processes on marine organisms will depend on their ability to cope with those changes, particularly the maintenance of calcium carbonate structures. Both a laboratory experiment (long-term exposure to decreased pH and increased temperature) and collections of individuals from natural environments characterized by low pH levels (individuals from intertidal pools and around a CO2 seep) were here coupled to comprehensively study the impact of near-future conditions of pH and temperature on the mechanical properties of the skeleton of the euechinoid sea urchin Paracentrotus lividus. To assess skeletal mechanical properties, we characterized the fracture force, Young's modulus, second moment of area, material nanohardness, and specific Young's modulus of sea urchin test plates. None of these parameters were significantly affected by low pH and/or increased temperature in the laboratory experiment and by low pH only in the individuals chronically exposed to lowered pH from the CO2 seeps. In tidal pools, the fracture force was higher and the Young's modulus lower in ambital plates of individuals from the rock pool characterized by the largest pH variations but also a dominance of calcifying algae, which might explain some of the variation. Thus, decreases of pH to levels expected for 2100 did not directly alter the mechanical properties of the test of P. lividus. Since the maintenance of test integrity is a question of survival for sea urchins and since weakened tests would increase the sea urchins' risk of predation, our findings indicate that the decreasing seawater pH and increasing seawater temperature expected for the end of the century should not represent an immediate threat to sea urchins vulnerability.


2014 ◽  
Vol 15 (3) ◽  
pp. 510 ◽  
Author(s):  
L. BRAY ◽  
M.A. PANCUCCI-PAPADOPOULOU ◽  
J. M. HALL-SPENCER

Ocean acidification caused by an increase in pCO2 is expected to drastically affect marine ecosystem composition, yet there is much uncertainty about the mechanisms through which ecosystems may be affected. Here we studied sea urchins that are common and important grazers in the Mediterranean (Paracentrotus lividus and Arbacia lixula). Our study included a natural CO2 seep plus reference sites in the Aegean Sea off Greece. The distribution of A. lixula was unaffected by the low pH environment, whereas densities of P. lividus were much reduced. There was skeletal degradation in both species living in acidified waters compared to reference sites and remarkable increases in skeletal manganese levels (P. lividus had a 541% increase, A. lixula a 243% increase), presumably due to changes in mineral crystalline structure. Levels of strontium and zinc were also altered. It is not yet known whether such dramatic changes in skeletal chemistry will affect coastal systems but our study reveals a mechanism that may alter inter-species interactions.


2021 ◽  
Vol 8 ◽  
Author(s):  
Stefania Marzorati ◽  
Giordana Martinelli ◽  
Michela Sugni ◽  
Luisella Verotta

Commonly known as “purple sea urchin,” Paracentrotus lividus occurs in the Mediterranean Sea and the eastern Atlantic Ocean. This species is a highly appreciated food resource and Italy is the main consumer among the European countries. Gonads are the edible part of the animal but they represent only a small fraction (10–30%) of the entire sea urchin mass, therefore, the majority ends up as waste. Recently, an innovative methodology was successfully developed to obtain high-value collagen from sea urchin by-products to be used for tissue engineering. However, tissues used for the collagen extraction are still a small portion of the sea urchin waste (<20%) and the remaining part, mainly the carbonate-rich test and spines, are discarded. Residual cell tissues, tests, and spines contain polyunsaturated fatty acids, carotenoids, and a class of small polyphenols, called polyhydroxynaphthoquinones (PHNQ). PHNQ, due to their polyhydroxylated quinonoid nature, show remarkable pharmacologic effects, and have high economic significance and widespread application in several cosmetic and pharmaceuticals applications. A green extraction strategy aimed to obtain compounds of interest from the wastes of sea urchins was developed. The core strategy was the supercritical CO2 technique, characterized by low environmental impacts. Fatty acids and carotenoids were successfully and selectively extracted and identified depending on the physical parameters of the supercritical CO2 extraction. Finally, the exhausted powder was extracted by solvent-based procedures to yield PHNQ. The presence of Spinochrome A and Spinochrome B was confirmed and extracts were characterized by a remarkably high antioxidant activity, measured through the 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assay. Overall, the selective and successive extraction methods were validated for the valorization of waste from sea urchins, demonstrating the feasibility of the techniques targeting added-value compounds.


Sign in / Sign up

Export Citation Format

Share Document