High Genetic Diversity and Implications for Determining Population Structure in the Blue CrabCallinectes sapidus

2017 ◽  
Vol 36 (1) ◽  
pp. 231-242 ◽  
Author(s):  
Xiaojun Feng ◽  
Ernest P. Williams ◽  
Allen R. Place
BMC Genetics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Cun Chen ◽  
Yanguang Chu ◽  
Changjun Ding ◽  
Xiaohua Su ◽  
Qinjun Huang

Abstract Background Black cottonwood (Populus deltoides) is one of the keystone forest tree species, and has become the main breeding parents in poplar hybrid breeding. However, the genetic diversity and population structure of the introduced resources are not fully understood. Results In the present study, five loci containing null alleles were excluded and 15 pairs of SSR (simple sequence repeat) primers were used to analyze the genetic diversity and population structure of 384 individuals from six provenances (Missouri, Iowa, Washington, Louisiana, and Tennessee (USA), and Quebec in Canada) of P. deltoides. Ultimately, 108 alleles (Na) were detected; the expected heterozygosity (He) per locus ranged from 0.070 to 0.905, and the average polymorphic information content (PIC) was 0.535. The provenance ‘Was’ had a relatively low genetic diversity, while ‘Que’, ‘Lou’, and ‘Ten’ provenances had high genetic diversity, with Shannon’s information index (I) above 1.0. The mean coefficient of genetic differentiation (Fst) and gene flow (Nm) were 0.129 and 1.931, respectively. Analysis of molecular variance (AMOVA) showed that 84.88% of the genetic variation originated from individuals. Based on principal coordinate analysis (PCoA) and STRUCTURE cluster analysis, individuals distributed in the Mississippi River Basin were roughly classified as one group, while those distributed in the St. Lawrence River Basin and Columbia River Basin were classified as another group. The cluster analysis based on the population level showed that provenance ‘Iow’ had a small gene flow and high degree of genetic differentiation compared with the other provenances, and was classified into one group. There was a significant relationship between genetic distance and geographical distance. Conclusions P. deltoides resources have high genetic diversity and there is a moderate level of genetic differentiation among provenances. Geographical isolation and natural conditions may be the main factors causing genetic differences among individuals. Individuals reflecting population genetic information can be selected to build a core germplasm bank. Meanwhile, the results could provide theoretical support for the scientific management and efficient utilization of P. deltoides genetic resources, and promote the development of molecular marker-assisted breeding of poplar.


2019 ◽  
Vol 85 (20) ◽  
Author(s):  
Moein Khojasteh ◽  
S. Mohsen Taghavi ◽  
Pejman Khodaygan ◽  
Habiballah Hamzehzarghani ◽  
Gongyou Chen ◽  
...  

ABSTRACT This study provides a phylogeographic insight into the population diversity of Xanthomonas translucens strains causing bacterial leaf streak disease of small-grain cereals in Iran. Among the 65 bacterial strains isolated from wheat, barley, and gramineous weeds in eight Iranian provinces, multilocus sequence analysis and typing (MLSA and MLST) of four housekeeping genes (dnaK, fyuA, gyrB, and rpoD), identified 57 strains as X. translucens pv. undulosa, while eight strains were identified as X. translucens pv. translucens. Although the pathogenicity patterns on oat and ryegrass weed species varied among the strains, all X. translucens pv. undulosa strains were pathogenic on barley, Harding’s grass, rye (except for XtKm35) and wheat, and all X. translucens pv. translucens strains were pathogenic on barley and Harding’s grass, while none of the latter group was pathogenic on rye or wheat (except for XtKm18). MLST using the 65 strains isolated in Iran, as well as the sequences of the four genes from 112 strains of worldwide origin retrieved from the GenBank database, revealed higher genetic diversity (i.e., haplotype frequency, haplotype diversity, and percentage of polymorphic sites) among the Iranian population of X. translucens than among the North American strains of the pathogen. High genetic diversity of the BLS pathogen in Iran was in congruence with the fact that the Iranian Plateau is considered the center of origin of cultivated wheat. However, further studies using larger collections of strains are warranted to precisely elucidate the global population diversity and center of origin of the pathogen. IMPORTANCE Bacterial leaf streak (BLS) of small-grain cereals (i.e., wheat and barley) is one of the economically important diseases of gramineous crops worldwide. The disease occurs in many countries across the globe, with particular importance in regions characterized by high levels of precipitation. Two genetically distinct xanthomonads—namely, Xanthomonas translucens pv. undulosa and X. translucens pv. translucens—have been reported to cause BLS disease on small-grain cereals. As seed-borne pathogens, the causal agents are included in the A2 list of quarantine pathogens by the European and Mediterranean Plant Protection Organization (EPPO). Despite its global distribution and high economic importance, the population structure, genetic diversity, and phylogeography of X. translucens remain undetermined. This study, using MLSA and MLST, provides a global-scale phylogeography of X. translucens strains infecting small-grain cereals. Based on the diversity parameters, neutrality indices, and population structure, we observe higher genetic diversity of the BLS pathogen in Iran, which is geographically close to the center of origin of common wheat, than has so far been observed in other areas of the world, including North America. The results obtained in this study provide a novel insight into the genetic diversity and population structure of the BLS pathogen of small-grain cereals on a global scale.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Anne C. Latreille ◽  
Pascal Milesi ◽  
Hélène Magalon ◽  
Patrick Mavingui ◽  
Célestine M. Atyame

Abstract Background In recent years, the Asian tiger mosquito Aedes albopictus has emerged as a species of major medical concern following its global expansion and involvement in many arbovirus outbreaks. On Réunion Island, Ae. albopictus was responsible for a large chikungunya outbreak in 2005–2006 and more recently an epidemic of dengue which began at the end of 2017 and is still ongoing at the time of writing. This dengue epidemic has seen a high number of human cases in south and west coastal regions, while few cases have been reported in the north and east of the island. To better understand the role of mosquito populations in such spatial patterns of dengue virus transmission in Réunion Island, we examined the genetic diversity and population structure of Ae. albopictus sampled across the island. Results Between November 2016 and March 2017, a total of 564 mosquitoes were collected from 19 locations in three main climatic regions (West, East and Center) of Réunion Island and were genotyped using 16 microsatellite loci. A high genetic diversity was observed with 2–15 alleles per locus and the average number of alleles per population varying between 4.70–5.90. Almost all FIS values were significantly positive and correlated to individual relatedness within populations using a hierarchical clustering approach based on principal components analyses (HCPC). However, the largest part of genetic variance was among individuals within populations (97%) while only 3% of genetic variance was observed among populations within regions. Therefore, no distinguishable population structure or isolation by distance was evidenced, suggesting high rates of gene flow at the island scale. Conclusions Our results show high genetic diversity but no genetic structure of Ae. albopictus populations in Réunion Island thus reflecting frequent movements of mosquitoes between populations probably due to human activity. These data should help in the understanding of Ae. albopictus vector capacity and the design of effective mosquito control strategies.


2020 ◽  
Author(s):  
Yibing Zeng ◽  
Tao Xiong ◽  
Bei Liu ◽  
Elma Carstens ◽  
Xiangling Chen ◽  
...  

Phyllosticta citriasiana is the causal agent of citrus tan spot, an important pomelo disease in Asia. At present, there is little or no information on the epidemiology or population structure of P. citriasiana. Using simple sequence repeat (SSR) markers, 94 isolates obtained from three pomelo production regions in southern/southeastern China were analyzed. The analyses showed high genetic diversity in each of the three geographic populations. A STRUCTURE analysis revealed two genetic clusters among the 94 isolates, one geographic population was dominated by genotypes in one cluster while the other two geographic populations were dominated by genotypes of the second cluster. P. citriasiana has a heterothallic mating system with two idiomorphs, MAT1-1 and MAT1-2. Analyses using mating type-specific primers revealed that both mating types were present in all three geographic populations, and in all three populations the mating type ratios were in equilibrium. Although the sexual stage of the fungus has not been discovered yet, analyses of allelic associations indicated evidence for sexual and asexual reproduction within and among populations. Despite the observed genetic differentiation among the three geographic populations, evidence for long-distance gene flow was found.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Karim Sorkheh ◽  
Mehrana Koohi Dehkordi ◽  
Sezai Ercisli ◽  
Attila Hegedus ◽  
Júlia Halász

Editor's Note: this Article has been retracted; the Retraction Note is available at https://www.nature.com/articles/s41598-020-72522-x


2019 ◽  
Author(s):  
Vanlalsanga No Surname ◽  
Sagolshem Priyokumar Singh ◽  
Yengkhom Tunginba Singh

Abstract Background Rice (Oryza sativa L.) is one of the most important crops of the world and a major staple food for half of the World’s human population. The Northeastern (NE) region of India lies in the Indo-Burma biodiversity hotspot and about 45% of the total flora of the country is found in the region. Local rice cultivars from different states of NE India were analyzed for genetic diversity and population structure using microsatellite markers, and their zinc and iron content. Results A total of 149 bands were detected using twenty-two microsatellite markers comprising both random and trait-linked markers, showing 100% polymorphism and high value of expected heterozygosity (0.6311) and the polymorphism information content (0.5895). Nali Dhan cultivar of Arunachal Pradesh possessed the highest genetic diversity (0.3545) among studied populations while Moirangphou Khonganbi of Manipur exhibited the lowest genetic diversity (0.0343). The model-based population structure revealed that all the studied 65 rice cultivars were grouped into two clusters. Cluster I was represented by 36 cultivars and cluster II by 29 cultivars. Badalsali cultivar of Assam possessed the highest Zn content (75.8 μg/g) and Kapongla from Manipur possessed the lowest (17.98 μg/g). The highest and the lowest Fe content was found in Fazu (215.62 μg/g) and Idaw (11.42 μg/g) of Mizoram. Conclusion The result suggested rice cultivars of NE India possessing high genetic diversity (Nali Dhan), high Zn (Badalsali) and Fe (Fazu) content can be useful as a source of germplasm for future rice improvement programs.


2021 ◽  
Author(s):  
Kun Pan ◽  
Jie Hou ◽  
Wenqin Su ◽  
Bo Yi ◽  
Bingmiao Gao

Abstract In this study, we analyzed the genetic diversity and population structure of 90 A. oxyphylla accessions from Hainan island using amplified fragment length polymorphism (AFLP) markers. These 90 accessions were composed of 15 populations from different geographic locations and divided into 4 clusters (A, B, C, and D) using the Unweighted pair group method based on arithmetic average (UPGMA). The genetic similarity between individuals ranged from 0.47 to 1.00 (average of 0.74), and most accessions from the same geographic population were grouped together. Principal coordinate analysis (PCA) showed a clear distinction among three clusters (A, B and C). Based on the loci information, the population structure analysis results by STRUCTURE and TESS were consistent with the clustering of PCA. Nine AFLP primer combinations generated 1537 polymorphic bands displaying rich polymorphism, thus indicating high genetic diversity among these 15 populations with an average Nei’s gene diversity of 0.1328 ± 0.160. In conclusion, AFLP markers efficiently analyzed the genetic diversity in A. oxyphylla, demonstrating highly significant genetic variation within and among populations. However, intrapopulation genetic variance was much higher than interpopulation variability, suggesting that efforts should be made for in situ germplasm conservation and resistant varieties cultivation.


Genes ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 676 ◽  
Author(s):  
Farahani ◽  
Maleki ◽  
Mehrabi ◽  
Kanouni ◽  
Scheben ◽  
...  

Characterization of genetic diversity, population structure, and linkage disequilibrium is a prerequisite for proper management of breeding programs and conservation of genetic resources. In this study, 186 chickpea genotypes, including advanced “Kabuli” breeding lines and Iranian landrace “Desi” chickpea genotypes, were genotyped using DArTseq-Based single nucleotide polymorphism (SNP) markers. Out of 3339 SNPs, 1152 markers with known chromosomal position were selected for genome diversity analysis. The number of mapped SNP markers varied from 52 (LG8) to 378 (LG4), with an average of 144 SNPs per linkage group. The chromosome size that was covered by SNPs varied from 16,236.36 kbp (LG8) to 67,923.99 kbp (LG5), while LG4 showed a higher number of SNPs, with an average of 6.56 SNPs per Mbp. Polymorphism information content (PIC) value of SNP markers ranged from 0.05 to 0.50, with an average of 0.32, while the markers on LG4, LG6, and LG8 showed higher mean PIC value than average. Unweighted neighbor joining cluster analysis and Bayesian-based model population structure grouped chickpea genotypes into four distinct clusters. Principal component analysis (PCoA) and discriminant analysis of principal component (DAPC) results were consistent with that of the cluster and population structure analysis. Linkage disequilibrium (LD) was extensive and LD decay in chickpea germplasm was relatively low. A few markers showed r2 ≥ 0.8, while 2961 pairs of markers showed complete LD (r2 = 1), and a huge LD block was observed on LG4. High genetic diversity and low kinship value between pairs of genotypes suggest the presence of a high genetic diversity among the studied chickpea genotypes. This study also demonstrates the efficiency of DArTseq-based SNP genotyping for large-scale genome analysis in chickpea. The genotypic markers provided in this study are useful for various association mapping studies when combined with phenotypic data of different traits, such as seed yield, abiotic, and biotic stresses, and therefore can be efficiently used in breeding programs to improve chickpea.


Sign in / Sign up

Export Citation Format

Share Document