scholarly journals Research on the Definition and Influence of New Production of Ship Industry Index of Energy Efficiency on the Ship Design Process

Author(s):  
Wang Ya Tao ◽  
Wu Fei
Brodogradnja ◽  
2021 ◽  
Vol 72 (3) ◽  
pp. 61-80
Author(s):  
Nastia Degiuli ◽  
◽  
Andrea Farkas ◽  
Ivana Martić ◽  
Ivan Zeman ◽  
...  

One of the main goals of the ship design process is the reduction of the total resistance, which is nowadays even more highlighted due to increasingly stringent rules related to ship energy efficiency. In this paper, the investigation of the impact of the bow on the total resistance of a yacht is carried out for three models by towing tank tests and numerical simulations. The verification and validation studies are performed, and satisfactory agreement is achieved. Also, a comparison of three turbulence models for the prediction of the total resistance of a yacht is made. The flow around the models of the yacht is analysed and it is demonstrated that bulbous bow causes the reduction of wave elevations. Experimental and numerical results indicate that the decrease in the total resistance due to bulbous bow can be up to 7%. Finally, the applicability of CFD within the ship design process is presented.


Author(s):  
Dongqin Li ◽  
Yifeng Guan ◽  
Qingfeng Wang ◽  
Zhitong Chen

The design of ship is related to several disciplines such as hydrostatic, resistance, propulsion and economic. The traditional design process of ship only involves independent design optimization within each discipline. With such an approach, there is no guarantee to achieve the optimum design. And at the same time improving the efficiency of ship optimization is also crucial for modem ship design. In this paper, an introduction of both the traditional ship design process and the fundamentals of Multidisciplinary Design Optimization (MDO) theory are presented and a comparison between the two methods is carried out. As one of the most frequently applied MDO methods, Collaborative Optimization (CO) promotes autonomy of disciplines while providing a coordinating mechanism guaranteeing progress toward an optimum and maintaining interdisciplinary compatibility. However there are some difficulties in applying the conventional CO method, such as difficulties in choosing an initial point and tremendous computational requirements. For the purpose of overcoming these problems, Design Of Experiment (DOE) and a new support vector regression algorithm are applied to CO to construct statistical approximation model in this paper. The support vector regression algorithm approximates the optimization model and is updated during the optimization process to improve accuracy. It is shown by examples that the computing efficiency and robustness of this CO method are higher than with the conventional CO method. Then this new Collaborative Optimization (CO) method using approximate technology is discussed in detail and applied in ship design which considers hydrostatic, propulsion, weight and volume, performance and cost. It indicates that CO method combined with approximate technology can effectively solve complex engineering design optimization problem. Finally, some suggestions on the future improvements are proposed.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Shahryar Habibi

Purpose The purpose of this study is to design a zero-energy home, which is known to be capable of balancing its own energy production and consumption close to zero. Development of low-energy homes and zero-net energy houses (ZEHs) is vital to move toward energy efficiency and sustainability in the built environment. To achieve zero or low energy targets in homes, it is essential to use the design process that minimizes the need for active mechanical systems. Design/methodology/approach The methodology discussed in this paper consists of an interfacing building information modeling (BIM) tool and a simulation software to determine the potential influence of phase change materials on designing zero-net energy homes. Findings BIM plays a key role in advancing methods for architects and designers to communicate through a common software platform, analyze energy performance through all stages of the design and construction process and make decisions for improving energy efficiency in the built environment. Originality/value This paper reviews the literature relevant to the role of BIM in helping energy simulation for the performance of residential homes to more advanced levels and in modeling the integrated design process of ZEHs.


2017 ◽  
Vol 33 (02) ◽  
pp. 81-100
Author(s):  
Rachel Pawling ◽  
Victoria Percival ◽  
David Andrews

For many years, the design spiral has been seen to be a convenient model of an acknowledged complex process. It has virtues particularly in recognizing the ship design interactive and, hopefully, converging nature of the process. However, many find it unsatisfactory. One early criticism focused on its apparent assumption of a relatively smooth process to a balanced solution implied by most ship concept algorithms. The paper draws on a postgraduate design investigation using the University College London Design Building Block approach, which looked specifically at a nascent naval combatant design and the issues of size associated with "passing decks" and margins. Results from the study are seen to suggest that there are distinct regions of cliffs and plateau in plots of capability against design output, namely ship size and cost. These findings are discussed with regard to the insight they provide into the nature of such ship designs and different ways of representing the ship design process. The paper concludes that the ship design spiral is a misleading and unreliable representation of complex ship design at both the strategic and detailed iterative levels.


2021 ◽  
Vol 157 (A2) ◽  
Author(s):  
H Liwång ◽  
H Jonsson

Choosing suitable survivability measures is a demanding task that has to start early in the ship design process. Throughout the design process there is a need for compromises that will define and sometimes limit future operations or capabilities. In this study generic survivability measures are compared. The study also examines the sensitivity of the calculated probabilities to changes in the threat description. The result shows that it is important to investigate the total effect of a hit over a set of relevant ship functions defined for example by survivability levels. The calculations for different threat definitions show that the changes in survivability are substantial when the threat definition is changed. Moreover, the effects of different hit assumptions differ between weapon types. This must be treated as an uncertainty which also should be reflected in the output and weighted into the decisions made, based on the survivability analysis.


1986 ◽  
Vol 2 (03) ◽  
pp. 185-195
Author(s):  
B. F. Tibbitts ◽  
P. A. Gale

The paper discusses, from a ship designer's perspective, some of the current topics and issues relating to the interface between naval ship design and production. The current environment within which naval ship design activity is taking place is described. Notable current views on Navy ship design and how it might be improved are summarized. Navy design topics pertinent to improving ship producibility, operability, maintainability and survivability are discussed and examples from recent ship designs are. presented. Issues which result from apparent conflicts in current design initiatives and critiques of the Navy ship design process are highlighted and discussed. Finally, some general conclusions are drawn.


Sign in / Sign up

Export Citation Format

Share Document