scholarly journals Wear characteristics of a W6Mo5Cr4V2 high speed steel in friction stir welding of AA6061/SiC/55p composite

Author(s):  
Xuecheng Song ◽  
Lijie Guo ◽  
Xiaosong Feng ◽  
Fan Cui
2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Kuan-Jen Chen ◽  
Fei-Yi Hung ◽  
Truan-Sheng Lui ◽  
Yong-Ren Shih

The friction stir welding process (friction stir welding/processing, FSW/FSP) has wear problems related to stirring tools. In this study, the plasma transfer arc (PTA) method was used with stellite 1 powders (Co-based) to coat on the head of a SKD61 stirring tool (SKD61-ST1) in order to investigate the wear performance and phase transformation of SKD61-ST1 after FSW. Under the same experimental parameters, the wear data were compared with the high-speed steel SKH51 (tempering material SKH51-T and annealed material SKH51-A) and tungsten-carbide cobalt (TCC). Results showed the PTA coating was a γ-Co solidification matrix with M7C3 and M23C6 carbides. After FSW, the wear resistance of SKD61-ST1 was better than that of SKH51-A and SKH51-T and lower than that of TCC. The SKD61-ST1, SKH51-A, and SKH51-T stirring tools exhibited sliding wear after FSP, where the pin and shoulder of the stirring tool formed a phase transfer layer on the surface, and the peeling of the phase transfer layer caused wear weight loss. The main phase of the phase transfer layer of the SKD61-ST1 tool was Al9Co2. The affinity and adhesion energy of the Co-Al phase was lower than that of Fe-Al phase, and the phase transfer layer of the SKD61-ST1 tool was thinner and had lower coverage, thereby increasing the wear resistance of the SKD61-ST1 stirring tools during FSW.


2011 ◽  
Vol 418-420 ◽  
pp. 1520-1523
Author(s):  
Yong Zhao ◽  
You Li Ye ◽  
Keng Yan ◽  
Li Long Zhou

Microstructures and mechanical properties of pure copper weld joints are discussed under different parameters of friction stir welding. The results reveal that it is conducive to the formation of compact joint in friction stir welding by applying high speed steel tool with high anti-bonding temperature. The friction stir welding joint with compact and defect-free microstructure could be obtained when the tool rotation rate is 1250- 1650 r/min and the tool traverse speed is 20-50 mm/min. Intensively plastic deformation occurs in the soften materials of the weld nugget zone and numerous crystal particles are broken under the influence of tool stirring. The microstructure of weld nugget zone is composed of tiny isometric crystals, which is due to the dynamic recrystallization of broken crystal particles. The structure of thermo-mechanical affected zone on both sides is asymmetric. Obvious boundary of the thermo affected zone could be seen on the advancing side, and the plastic streamline is apparent.


Friction Stir Welding was mainly suitable for aluminum alloys due to low softening temperatures. It is challenging to join the high melting temperature metals due to the lack of tool materials. The main focus of this work is to study the feasibility of joining the similar or dissimilar ferrous material. The molybdenum based high speed steel acts a rotating non consumable tool to weld the two ferrous plates. The friction stir welding was achieved using vertical milling machine. Welding samples were examined by destructive and nondestructive test. The welds were produced by 3 mm plate over a range of spindle speed from 500 to 1000 rpm. The results of FSW, stir zone of hardness varies from 139 to 145 HV executed on AISI 1018 plate steel.


2012 ◽  
Vol 3 (1) ◽  
pp. 66-79 ◽  
Author(s):  
Sasidhar Muttineni ◽  
Pandu R. Vundavilli

Friction stir welding (FSW) is a solid state welding process, which is used for the welding of aluminum alloys. It is important to note that the mechanical properties of the FSW process depends on various process parameters, such as spindle speed, feed rate and shoulder depth. Two different tool materials, such as High speed steel (HSS) and H13 are considered for the welding of Al 7075. The present paper deals with the modeling of FSW process using neural networks. A three layered feed forward neural network (NN) has been used to model the FSW of aluminum alloys. It is important to note that the connection weights and bias values of the NN are optimized with the help of a binary coded genetic algorithm (GA). The training of the NN with the help of GA is a time consuming process. Hence, offline training has been provided to optimize the connection weights and bias values of the neural network. Once, the training is over, the GA trained neural network will be used for online prediction of the mechanical properties of FSW process at different operating conditions.


Author(s):  
B. K. Dhindaw ◽  
P. S. De ◽  
Priyadarshini Jayashree

A intercalating joint between Al and Ti alloy is friction stir welded using a high speed steel tool. The material mixing occurs mainly in the shoulder region while the pin region shows nominal mixing. Microscopy and hardness experiments indicate sporadic formation of intermetallic compounds. The joint region near the shoulder and to some extent below it shows increase in hardness compared to the base Ti alloy.


2021 ◽  
Vol 880 ◽  
pp. 57-62
Author(s):  
Normariah Che Maideen ◽  
Salina Budin ◽  
Koay Mei Hyie ◽  
Nor Azirah Mohd Fohimi

Stirring tool is one of the important factor that contribute to the successful of Friction Stir Welding (FSW). Role of tool, is to heat the welding zone and stir the material along the process. Many studies have been conducted by other researchers to improve the performance of stirring tool. Similar to this work, it is aimed to investigate and analyze the effect of stirring tool surface condition on wear characteristics in friction stir welding process. Four tools have been fabricated with pre-determined surface condition. Tool 1: H13 without heat treatment and without coating. Tool 2: H13 with heat treatment only. Tool 3: H13 with TiCN coating only and Tool 4: H13 with heat treatment and with TiCN coating. Friction stir welding was performed to test and verify the performance of fabricated tools. Process parameter used are 1270 RPM for rotating speed while 218 mm/min for welding speed. From the result, Tool 4 performed better in terms of physical wear as well as wear rate.


2008 ◽  
Vol 94 (11) ◽  
pp. 539-544 ◽  
Author(s):  
Takeshi Ishikawa ◽  
Hidetoshi Fujii ◽  
Kazuo Genchi ◽  
Shunichi Iwaki ◽  
Shigeki Matsuoka ◽  
...  

2019 ◽  
Vol 269 ◽  
pp. 02006
Author(s):  
Li Fu ◽  
Fenjun Liu

Al-Mg-Si (6061-T6) alloy with 0.8 mm thick plate was welded successfully by use of high speed friction stir welding (FSW) technology. The microstructural characteristics and mechanical property of the butt joints prepared by high speed FSW were analyzed in detail, the influence of welding parameters, fixture condition and after welding heat treatment were also explored. The results shown that sound surface topography and defect-free bonding interface were observed in the nugget zone (NZ). The microhardness of the as-welded joint was lower than that of the base metal because of the welding heat effect. Compared with the conventional speed FSW, the number of β-Mg2Si, Al2CuMg and Al8Fe2Si precipitated phases existed in the high speed FSWed NZ increased, which made the microhardness in the NZ improved significantly. The rod-shaped precipitates (Mg2Si) have the greatest influence on the microhardness distributions. The maximum tensile strength of 301.8 MPa, which was 85.8% of the base metal, was obtained at high rotation speed of 8000 rpm and fast welding speed of 1500 mm/min. The tensile strength of the ultra-high speed FSWed butt joints were improved significantly by post-weld artificial aging, with a maximum joint efficiency of 90.4%.


2009 ◽  
Vol 49 (6) ◽  
pp. 897-901 ◽  
Author(s):  
Takeshi Ishikawa ◽  
Hidetoshi Fujii ◽  
Kazuo Genchi ◽  
Shunichi Iwaki ◽  
Shigeki Matsuoka ◽  
...  

2012 ◽  
Vol 157-158 ◽  
pp. 1628-1631
Author(s):  
Xiao Dong Yang ◽  
Zhuo Juan Yang ◽  
You Quan Chen

By using pin-on-disk wear test method, the wear behavior of W9Gr4V high speed steel with smooth and non-smooth concave samples which treated by laser texturing technology was investigated between room temperature and 500 . It was found that the anti-wear ability of the non-smooth concave samples was increased more than that of the smooth ones and the anti-wear ability of the non-smooth samples was evident than the smooth ones at temperature increasing. In this paper, the anti-wear mechanism of non-smooth concave samples and wear characteristics with smooth and non-smooth samples in high-temperature were analyzed.


Sign in / Sign up

Export Citation Format

Share Document