scholarly journals Influence of Al Concentration on the High Temperature Cyclic Oxidation Resistance Behavior of Fe-15Cu Alloys

Author(s):  
Lingyun Bai ◽  
Xianchao Xu ◽  
Junhuai Xiang ◽  
Songping Wang ◽  
Ting Wang
2005 ◽  
Vol 482 ◽  
pp. 243-246 ◽  
Author(s):  
Dalibor Vojtěch ◽  
Tomáš Kubatík ◽  
Hana Čížová

The paper describes a positive influence of silicon on the high-temperature oxidation resistance of titanium. Since silicon additions can be realized both by bulk and by surface alloying, the surface siliconizing techniques, as well as structure of the Si-rich layers, are illustrated. Furthermore, the high-temperature cyclic oxidation resistance of the surface siliconized titanium and of the TiSi2 alloy are compared to that of pure Ti and TiAl6V4 alloy, and the oxidation mechanism is discussed.


1990 ◽  
Vol 194 ◽  
Author(s):  
Carl E. Lowell ◽  
Charles A. Barrett ◽  
J. Daniel Whittenberger

AbstractBased upon recent mechanical property tests a NiAl-AlN composite produced by cryomilling has very attractive high temperature strength. This paper focuses on the oxidation resistance of the NiAl-AlN composite at 1473 and 1573 K as compared to that of Ni-47Al-0.15Zr, one of the most oxidation resistant intermetallics. The results of cyclic oxidation tests show that the NiAl-AlN composite has excellent properties although not quite as good as those of Ni-47Al-0.15Zr. The onset of failure of the NiAl-AlN was unique in that it was not accompanied by a change in scale composition from alumina to less protective oxides. Failure in the composite appears to be related to the entrapment of AlN particles within the alumina scale.


2018 ◽  
Vol 143 ◽  
pp. 249-257
Author(s):  
Yunus Azakli ◽  
Sezgin Cengiz ◽  
Yucel Gencer ◽  
Mehmet Tarakci

Alloy Digest ◽  
1987 ◽  
Vol 36 (9) ◽  

Abstract NIMONIC alloy 86 is a nickel-base high-temperature alloy with exceptionally good cyclic oxidation resistance at 1050 C (1922 F). The alloy has good workability, ductility and weldability. It is intended principally for use in sheet form. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as creep. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Ni-351. Producer or source: Inco Alloys International Inc..


2018 ◽  
Vol 732 ◽  
pp. 655-665 ◽  
Author(s):  
Toto Sudiro ◽  
April Imelda Juita Hia ◽  
Ciswandi ◽  
Didik Aryanto ◽  
Bambang Hermanto ◽  
...  

1992 ◽  
Vol 273 ◽  
Author(s):  
Randy R. Bowman

ABSTRACTAs part of a study to assess NiAl-based composites as potential high-temperature structural materials, the mechanical properties of polycrystalline NiAl reinforced with 30 vol.% continuous single crystal Al2O3 fibers were investigated. Composites were fabricated with either a strong or weak bond between the NiAl matrix and Al2O3 fibers. The effect of interfacial bond strength on bending and tensile properties, thermal cycling response, and cyclic oxidation resistance was examined. Weakly-bonded fibers increased room-temperature toughness of the composite over that of the matrix material but provided no strengthening at high temperatures. With effective load transfer, either by the presence of a strong interfacial bond or by remotely applied clamping loads, Al2O3 fibers increased the high-temperature strength of NiAl but reduced the strain to failure of the composite compared to the monolithic material. Thermal cycling of the weakly-bonded material had no adverse effect on the mechanical properties of the composite. Conversely, because of the thermal expansion mismatch between the matrix and fibers, the presence of a strong interfacial bond generated residual stresses in the composite that lead to matrix cracking. Although undesirable under thermal cycling conditions, a strong interfacial bond was a requirement for achieving good cyclic oxidation resistance in the composite. In addition to the interfacial characterization, compression creep and room temperature fatigue tests were conducted on weakly-bonded NiAl/Al2O3 composites to further evaluate the potential of this system. These results demonstrated that the use of A12O3 fibers was successful in improving both creep and fatigue resistance.


Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 880
Author(s):  
Jing Ma ◽  
Ning Wen ◽  
Ruiyang Wang ◽  
Jiangang Wang ◽  
Xin Zhang ◽  
...  

Protective coating is an effective way to extend materials’ high-temperature service life. In order to improve the high-temperature oxidation resistance of AISI 304 stainless steel, mullite films with different layers were successfully prepared by the sol-gel method and the sintering process on the surface of stainless steel. The effect of the film layers on the high-temperature oxidation resistance of stainless steel at 900 °C for 100 h was studied. The analysis results of oxidation kinetics, X-rays diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive analysis (EDS) show that Al1.4Si0.3O2.7 mullite film effectively improved the high-temperature oxidation resistance of stainless steel. The sample with three-layer mullite film has the best high-temperature oxidation resistance. The mass gain and oxidation spalling mass are only 4.6% and 34.5% of those of the uncoated sample after 100 h cyclic oxidation at 900 °C. A chromium oxide layer was formed at the interface of mullite film and the substrate during the sintering process. The generation of selective Cr2O3 scale was promoted at the cyclic oxidation stage so that the sample with three-layers has excellent high-temperature oxidation resistance.


2010 ◽  
Vol 33 (2) ◽  
pp. 334-340 ◽  
Author(s):  
V. F. C. Lins ◽  
M. M. R. Castro ◽  
R. Z. Domingues ◽  
T. Matencio

Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5309
Author(s):  
Cheng Wang ◽  
Qiuliang Li ◽  
Zhenping Guo ◽  
Xiangrong Li ◽  
Xiangyu Ding ◽  
...  

Molybdenum silicon boron alloy is regarded as the next generation of superalloy that is expected to replace nickel-based superalloys. However, the high-temperature oxidation resistance of Mo-Si-B alloy has always been an issue worth studying. In this study, Mo-9Si-8B alloy was prepared via a plasma oscillatory pressure sintering process and pre-oxidized at 1300 °C while maintaining a certain balance of mechanical and oxidation properties. The influence of the oxide protective layer on its performance at high temperature of 1150 °C was explored, the micro-mechanism of its performance and its failure mode of the hinge-locking mechanism was illustrated, and finally, its oxidation kinetics was inferred. In conclusion, pre-oxidized Mo-9Si-8B (at.%) alloy did play a role in delaying the oxidation process during the initial period of cyclic oxidation. However, with the increase of cyclic oxidation time, the improvement of high-temperature oxidation resistance was limited.


Author(s):  
H. Kung ◽  
T. R. Jervis ◽  
J.-P. Hirvonen ◽  
M. Nastasi ◽  
T. E. Mitchell ◽  
...  

MoSi2 is a potential matrix material for high temperature structural composites due to its high melting temperature and good oxidation resistance at elevated temperatures. The two major drawbacksfor structural applications are inadequate high temperature strength and poor low temperature ductility. The search for appropriate composite additions has been the focus of extensive investigations in recent years. The addition of SiC in a nanolayered configuration was shown to exhibit superior oxidation resistance and significant hardness increase through annealing at 500°C. One potential application of MoSi2- SiC multilayers is for high temperature coatings, where structural stability ofthe layering is of major concern. In this study, we have systematically investigated both the evolution of phases and the stability of layers by varying the heat treating conditions.Alternating layers of MoSi2 and SiC were synthesized by DC-magnetron and rf-diode sputtering respectively. Cross-sectional transmission electron microscopy (XTEM) was used to examine three distinct reactions in the specimens when exposed to different annealing conditions: crystallization and phase transformation of MoSi2, crystallization of SiC, and spheroidization of the layer structures.


Sign in / Sign up

Export Citation Format

Share Document