scholarly journals DETERMINATION OF TRAFFIC FLOWS PARAMETERS ON THE MANAGEMENT NETWORK

Author(s):  
Nataliia Semchenko ◽  

The work is devoted to the actual problem of determining the parameters of dense traffic flows on the road cities network, which can be used when introducing automated traffic control systems. The subject of the study is to determine the parameters of traffic flows in the central part of the city. The purpose of the work is to develop methods for determining the parameters of traffic flows of the street and road network on the basis of empirical and analytical modeling to reduce the number of peripheral measuring devices in the automated traffic control system. Methodology. In the given thesis there was solved the applied scientific problem of short-term operational forecasting of the traffic flow intensity on the transport network using the empirical-analytical approach, in which the measurement of traffic flow parameters at the entrances to the area of traffic flow management is carried out by transport detectors, internal local objects are determined by modeling. The proposed model is based on the determination of intensities at approaches to stop lines of internal crossroads of the management area using recurrent sequences. Experimental researches of traffic flows on the network and on the crossings were carried out using video filming during periods of maximum load. A comparative analysis of the simulation results with the experimental data showed that the relative error on a network with an area of 50-60 hectares does not exceed 3%, which indicates the adequacy of the model and the possibility of using it for management tasks. Practical implications. Implementation of the empirical-analytical method in automated traffic management systems will make it possible to reduce the number of detectors by 43-46% depending on the area of traffic management and obtain a sufficient economic effect. The regularities of the movement of dense traffic flows of high specific intensity on short hauls, typical for the central parts of cities, have been investigated. Value/originality. According to experimental results there were obtained approximating models of parameters of the logarithmic normal probabilistic law of time intervals distribution in dense traffic flows, the specific intensity of which exceeds 600 vph; the changes in basic characteristics of the vehicles group in the traffic flow when driving through the road crossing taking into account its intensity and the distance from the group forming object are determined.

2018 ◽  
Vol 11 (4) ◽  
pp. 195-200
Author(s):  
NEERAJA MOHANAN ◽  
AFAQ AHMAD ◽  
SAYYID SAMIR AL-BUSAIDI ◽  
LAZHAR KHIRIJI ◽  
AMIR ABDULGHANI ◽  
...  

In the past couple of decades, the number of vehicles has increased radically. A statistic which presents the number of cars sold worldwide from 1990 through 2017, forecasts for 2018, some 81.6 million automobiles are expected to be sold by the end 2018. With this continuous increase, it is becoming very tedious to keep track of each vehicle for the purpose of security, law enforcement and traffic management. This phenomenon of rapidly increasing vehicles on the road highlights the importance for a vehicle number plate recognition system. By recognizing the car plates, the drivers of the vehicle can be identified from the database. Number plate detection system are used in various applications like traffic law maintenance, traffic control, automatic toll collection, parking systems, automatic gate openers. This paper presents a unique algorithmic procedure for detecting vehicle plate number which is based on the concept of mathematical morphology. The developed algorithm is simple, efficient and flexible. The algorithm is capable of working satisfactorily even in different constraints such as like rain, smoke and shadow. This user-friendly software tool is developed on MATLAB platform which is one of the common and efficient image processing analysis tools.


Author(s):  
M.G. Boyarshinov ◽  
◽  
A.S. Vavilin ◽  
A.G. Shumkov ◽  
◽  
...  

The relevance of this work is determined by the need to find modern ways to process the information about traffic flows for regulating and controlling the movement of transport and pedestrians, to reduce congestion, road accidents, etc. The object of study is a part of road with heavy two-way traffic, equipped with a software and hardware complex that allows to measure the characteristics of the transport flow. The subject of the study is the daily intensity of the cars flow during the week, from Monday to Sunday. The purpose of this study is to analyze the amplitudes, frequencies, and periods of harmonic functions obtained by decomposing the time series of road traffic intensities to identify the main patterns of traffic flow formation. As a theoretical and methodological approach, the decomposition of the function of the traffic flow intensity in the Fourier series with respect to harmonic functions is used. The approach developed by the authors using the fast Fourier transform procedure made it possible to determine the amplitude-frequency characteristics of the time series under consideration, which is a scientific novelty of the analysis. It is proposed to use the «period-amplitude» characteristics as physically more meaningful instead of the «frequency-amplitude» dependencies traditionally used for the analysis. The processing of data obtained from software and hardware complexes allowed us to determine dependences of the car flow intensity on the road of the Perm city at different averaging intervals, to describe the features of the motor transport movement on the road under consideration. As a result of the study, the amplitude-frequency characteristics of time series are obtained. It is shown that the individual harmonics of the Fourier series expansion of the traffic flow intensity, which exhibits the properties of a random function, duplicate the periodicity of the global, local, and intermediate extremes of the original function and have similar periods. The practical significance consists in the use of the decomposition of the function of the traffic flow intensity in the Fourier series of harmonic functions for predicting traffic flows, controlling the operation of traffic lights, monitoring the operation of equipment, as well as in the reconstruction, design and construction of roads and road objects. The study will continue in the direction of obtaining, processing and determining the «period-amplitude» characteristics for time series of traffic flow intensity for other road networks.


2015 ◽  
Vol 16 (2) ◽  
pp. 99-106 ◽  
Author(s):  
Marek Ščerba ◽  
Tomáš Apeltauer ◽  
Jiří Apeltauer

Abstract Traffic infrastructure localities with temporal restrictions for example due to reconstructions, or modernization, are important aspects influencing the traffic safety and traffic flow. On the basis of our research, we can identify main factors, which generate travel time loses, and which often cause traffic accidents in bottlenecks. First of all, it is improper late merge, speeding, tailgating, lower tolerance and consideration to other road users. Nervousness and ignorance of drivers also play an important role in generation of traffic congestions, lower level of service and resulting external economic loses. One of the tools eliminating the traffic restriction negative impacts is usage of portable telematics systems. In 2011 to 2013,project ViaZONE was in progress, which was to design an intelligent system with the aim to eliminate the mentioned risks and reduce economic losses generated by traffic congestions. Using available data and information, we have proved profitability and cost-effectiveness of dynamic systems for traffic control of work zones. Regarding traffic management, the system showed some problems due to indisciplined drivers and the system proved that speeding in these hazardous road segments is a common practice which caused accidents and congestions.


THE BULLETIN ◽  
2021 ◽  
Vol 389 (1) ◽  
pp. 14-17
Author(s):  
A.А. Suleimen ◽  
G.B. Kashaganova ◽  
G.B. Issayeva ◽  
B.R. Absatarova ◽  
M.C. Ibraev

One of the most pressing problems of large cities is the problem of traffic management of vehicles. The reason for this problem is an imperfect way to manage traffic flows. Traffic light regulation is of particular importance in traffic management. Most modern traffic light control systems operate at set time intervals and are not able to cope with the constantly changing situation on the road. A promising direction for solving this problem is to optimize the system using artificial neural networks. The advantage of neural networks is self-learning, which allows the system to adapt to the changing situation on the road. Despite numerous attempts, it has not yet been possible to obtain a high-quality mathematical model of urban traffic management. This model should determine the functional dependence of transport flow parameters on control parameters. Nowadays, traffic flows are regulated everywhere by means of traffic lights. If we can get a fairly accurate mathematical model of traffic flows, we can determine the optimal duration of the traffic signal phases to achieve the maximum capacity of the road network node. A fairly accurate mathematical model of traffic management that works in predictive mode will display an estimate of the optimal control parameters, as well as make correct decisions in emergency situations. Well-known mathematical models of road traffic take into account only the average values of traffic flows, and not the exact number of cars on each road section at a particular time.


Author(s):  
G. Kalyan

Traffic congestion is now a big issue. Although it seems to penetrate throughout the world, urban towns are the ones which are most effected. And it is expanding in nature that it is necessary to understand the density of roads in real time to better regulate signals and efficient management of transport. Various traffic congestions, such as limited capacity, unrestricted demand, huge Red Light waits might occur. While insufficient capacity and unlimited demand are somehow interconnected, their delay in lighting is difficult to encode and not traffic dependant. The necessity to simulate and optimise traffic controls therefore arises in order to better meet this growing demand. The traffic management of information, ramp metering, and updates in real-time has been frequently used in recent years for image processing and monitoring systems. An image processing can also be used for the traffic density estimation. This research describes the approach for the computation of real-time traffic density by image processing for using live picture feed from cameras. It focuses also on the algorithm for the transmission of traffic signals on the road according to the density of vehicles and therefore aims to reduce road congestion, which reduces the number of accidents.


2021 ◽  
Author(s):  
Kristián Čulík ◽  
Veronika Harantová ◽  
Alica Kalašová

Today, traffic is an integral part of every active human life. People prefer individual car transport to public transport. This fact increases the number of cars on the roads. This article focuses on the basic characteristics between moving vehicles on the road, traffic flow characteristics - intensity, speed and density. Their values are obtained from traffic survey and radar Sierzega. In addition, a simulation was made from the measured values and the basic characteristics of the traffic flow were evaluated using mathematical statistics


Author(s):  
Robert Bastholm ◽  
Anthony Masalonis ◽  
Tanya Yuditsky

Traffic Flow Management (TFM) functions to minimize airspace congestion and maximize safety and efficiency. TFM personnel at the U.S. Federal Aviation Administration use Traffic Situation Display (TSD) software to observe air traffic and weather systems and issue strategic congestion-mitigation initiatives to Air Traffic Control facilities. Since its initial deployment, the TSD has been augmented by many groups of developers. This distributed process has led to an inconsistent interface that does not always adhere to best usability practices, especially because during the initial stages of development there was little human factors involvement. This can have a detrimental effect on new users learning the interface and also may make experienced users more likely to make errors. We developed a style guide for an operational Air Traffic Management tool, and a companion consistency assessment, to help developers (a) adhere to usability principles for future software expansions and (b) bring older portions of the interface into compliance with user-centered design. We discuss the process of style guide development—including the unique aspects of the TFM user population and application domain and their implications for creating a style guide for TFM software—and the applicability of our guide beyond the TSD tool.


2020 ◽  
Vol 8 (6) ◽  
pp. 4693-4696

Managing traffic maintaining order is the most demanding tasks in the contemporary day and age. Emergency vehicles such as an ambulance face lot of hardships when they get stuck in traffic, valuable human life is lost due to poor traffic management. In this paper a model is proposed for calculating traffic heaviness on roads using processing techniques for images with ambulance detection system and controlling model for traffic signals with the information extracted from images of vehicles on roads captured by video camera. The traffic intensity depends on the total vehicles on the road. The proposed model counts the vehicles in the lane and checks for the presence of emergency vehicles , whenever an emergency vehicle is detected that particular lane is allowed to move and the signal is turned to green.


2019 ◽  
Vol 16 (6) ◽  
pp. 680-691 ◽  
Author(s):  
A. N. Novikov ◽  
S. V. Eremin ◽  
A. G. Shevtsova

Introduction. The paper deals with traffic light regulation. This task is always relevant. Thus, even for an ordinary intersection, depending on the intensity of traffic flows, the control cycles should differ significantly. This paper discusses all kinds of systems, namely, two-phase, three-phase, four-phase and others. In addition to solving optimization problems of regulation the authors propose to use the device managed network, which allows setting the configuration of the transport network as the base graph of the managed network, and then based on the parameterization of the graph of the throughput ability of the network to solve the optimization problem of selecting the control traffic and pedestrian flow.Methods and materials. For solving the problem of traffic management on the road network, the authors proposed to use the mechanisms of managed networks. As a result, the authors presented a technique based on the calculation of saturation flows, the main characteristic of the control technique, which was activated when there were no requests from the transport detectors to turn by the green signal.Results. The authors constructed a generalized simulation model of control phases of regulation based on the usage of controlled networks, depending on the intensity of traffic flows and formed a method of selecting modes of traffic lights for different traffic situations.Discussion and conclusions. The solution of the problem of traffic light regulation significantly affects the traffic management efficiency. The authors determine the main parameters based on the analysis of traffic light control methods. As a result of the calculation of the saturation flow and information about the intensity of traffic, the authors form the method of selecting the necessary modes of the phosphor object’s operation.The authors have read and approved the final manuscript. Financial transparency: the authors have no financial interest in the presented materials or methods. There is no conflict of interest.


Author(s):  
Oleg Fyodorovich Danilov ◽  
Victor Ivanovich Kolesov ◽  
Denis Alexandrovich Sorokin ◽  
Maxim Leonidovich Gulaev

The transportation industry of a modern city involves the effective systems for the road traffic management. To manage any object is impossible without understanding its specifics. The tasks of road traffic management are based on mathematical models of traffic flows. The “following the leader” model based on the linear dynamic interval of vehicles has become widely accepted in the model analysis. The paper discusses the mathematical model of the linear dynamic interval of vehicles; the model is identified structurally and parametrically. Coefficients of the model are analyzed in detail; a generalized assessment of the dynamic performance of the traffic flow, evolved in various road conditions, is given. The study has resulted in the proposed basic models for traffic flows that can be used for algorithmic support of the model analysis of traffic flows and the road traffic management.


Sign in / Sign up

Export Citation Format

Share Document