scholarly journals A Review on Quadratic Boost Topology-Based PFC Techniques

Electronic devices require DC voltage for their operation so rectification (AC to DC conversion) is needed to convert AC voltage from the mains to DC. During this conversion, harmonics are generated in the system as well as power factor (PF) gets poor hence degrading power quality. Power factor correction (PFC) converters are being commonly used to increase PF and reduce harmonics. Boost PFC Converter is the mostly used topology for active power factor correction because of several benefits like series input inductor, high PF, but its voltage gain is not that good and it has output voltage ripple. Quadratic Boost PFC Converter can be used to overcome these two drawbacks by providing high voltage gain and less outputvoltage ripples. This paper represents applications and topologies of Quadratic Boost Converter, latest control techniques to achieve high voltage gain, regulated output and, high PF. Also, comparison is made between Boost Converter and Quadratic Boost PFC Converter. Finally, conclusion is made of this survey

2014 ◽  
Vol 61 (12) ◽  
pp. 6739-6746 ◽  
Author(s):  
George Cajazeiras Silveira ◽  
Fernando Lessa Tofoli ◽  
Luiz Daniel Santos Bezerra ◽  
Rene Pastor Torrico-Bascope

2021 ◽  
Author(s):  
HENRIQUE JAHNKE HOCH ◽  
TIAGO MIGUEL KLEIN FAISTEL ◽  
ADEMIR TOEBE ◽  
ANTóNIO MANUEL SANTOS SPENCER ANDRADE

High step-up DC-DC converters are necessary in photovoltaic energy generation, due the low voltage of the panels source. This article propose the Doubler Output Coupled Inductor converter. This converter is based in boost converter and utilize switched capacitors and a coupled inductor to maximize the static voltage gain. The converter achieve a high voltage gain with low turns ratio in the coupled inductor and an acceptable duty cycle. Can highlight the converter utilize low number of components and have low voltage and current stresses in semiconductors. To validate and evaluate the operation of the converter a 200W prototype is simulated.


In this paper, a single switch single stage switched inductor based cuk converter with power factor correction control techniques is proposed. The main features of the proposed converter is low current stress, high voltage conversion ratio, reduction of components, high efficiency, low THD, etc., The operation of the proposed converter is explained in several modes along with the design of the converter. The performance of the proposed converter with different loads such as resistive, battery and motor loads with CC and CV control is analyzed and various factors such as power factor, efficiency and THD are compared. The Simulation work is carried out in MATLAB/Simulink software.


Author(s):  
K. Jyotheeswara Reddy ◽  
N. Sudhakar ◽  
S. Saravanan ◽  
B. Chitti Babu

AbstractHigh switching frequency and high voltage gain DC-DC boost converters are required for electric vehicles. In this paper, a new high step-up boost converter (HSBC) is designed for fuel cell electric vehicles (FCEV) applications. The designed converter provides the better high voltage gain compared to conventional boost converter and also reduces the input current ripples and voltage stress on power semiconductor switches. In addition to this, a neural network based maximum power point tracking (MPPT) controller is designed for the 1.26 kW proton exchange membrane fuel cell (PEMFC). Radial basis function network (RBFN) algorithm is used in the neural network controller to extract the maximum power from PEMFC at different temperature conditions. The performance analysis of the designed MPPT controller is analyzed and compared with a fuzzy logic controller (FLC) in MATLAB/Simulink environment.


Electronics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1932
Author(s):  
Navid Salehi ◽  
Herminio Martínez-García ◽  
Guillermo Velasco-Quesada

To improve the voltage gain of step-up converters, the cascaded technique is considered as a possible solution in this paper. By considering the concept of cascading two Z-source networks in a conventional boost converter, the proposed topology takes the advantages of both impedance source and cascaded converters. By applying some modifications, the proposed converter provides high voltage gain while the voltage stress of the switch and diodes is still low. Moreover, the low input current ripple of the converter makes it absolutely appropriate for photovoltaic applications in expanding the lifetime of PV panels. After analyzing the operation principles of the proposed converter, we present the simulation and experimental results of a 100 W prototype to verify the proposed converter performance.


2020 ◽  
Vol 11 (4) ◽  
pp. 64 ◽  
Author(s):  
Zhengxin Liu ◽  
Jiuyu Du ◽  
Boyang Yu

Direct current to direct current (DC/DC) converters are required to have higher voltage gains in some applications for electric vehicles, high-voltage level charging systems and fuel cell electric vehicles. Therefore, it is greatly important to carry out research on high voltage gain DC/DC converters. To improve the efficiency of high voltage gain DC/DC converters and solve the problems of output voltage ripple and robustness, this paper proposes a double-boost DC/DC converter. Based on the small-signal model of the proposed converter, a double closed-loop controller with voltage–current feedback and input voltage feedforward is designed. The experimental results show that the maximum efficiency of the proposed converter exceeds 95%, and the output voltage ripple factor is 0.01. Compared with the traditional boost converter and multi-phase interleaved DC/DC converter, the proposed topology has certain advantages in terms of voltage gain, device stress, number of devices, and application of control algorithms.


Sign in / Sign up

Export Citation Format

Share Document