scholarly journals The Effect of Crude Extracts of Sonchus oleraceus on Cancer Cell Growth (In vitro)

2010 ◽  
Vol 34 (2) ◽  
pp. 30-38
Author(s):  
Zainab R. Zghair

This study was designed to evaluate the anticancer, effects of the ethanolic (EE), cold aqueous (CAE), and hot aqueous (HAE) extracts of Sonchus oleraceus on cancer cell lines (in vitro). In vitro study was performed on three cancer cell lines (murine mammary adenocarcinoma AMN-3 cell line, laryngeal carcinoma Hep-2 cell line) and rat embryogenic fibroblast (REF) as normal cell line. Periods of exposure of cell lines were measured at 24, 48, and 72-hr in a microtitration plate under complete sterile conditions. Different concentrations starting from (78.125 to 10000) μg/ml of two fold dilution for each extract were prepared and tested on each cell line, with three replicates for each concentration. The three extracts showed concentration and time dependence with growth inhibitory effects, and the highest effect was obtained from ethanolic extract at higher concentrations after 48 hr. of exposures on both AMN3 and Hep-2 cell lines, while the cytotoxic effect of both cold aqueous and hot aqueous extracts on AMN-3 and Hep-2 cell lines exhibited that the higher concentrations gave a significantly (P<0.05) and the higher inhibition growth rate of cells were increased at 24 hrs.Conclusion: These results suggest that the cytotoxic concentrations of Sonchus oleraceus extracts showed variation in values among cell lines according to cell types in vitro.

2017 ◽  
Vol 63 (1) ◽  
pp. 141-145
Author(s):  
Yuliya Khochenkova ◽  
Eliso Solomko ◽  
Oksana Ryabaya ◽  
Yevgeniya Stepanova ◽  
Dmitriy Khochenkov

The discovery for effective combinations of anticancer drugs for treatment for breast cancer is the actual problem in the experimental chemotherapy. In this paper we conducted a study of antitumor effect of the combination of sunitinib and bortezomib against MDA-MB-231 and SKBR-3 breast cancer cell lines in vitro. We found that bortezomib in non-toxic concentrations can potentiate the antitumor activity of sunitinib. MDA-MB-231 cell line has showed great sensitivity to the combination of bortezomib and sunitinib in vitro. Bortezomib and sunitinib caused reduced expression of receptor tyrosine kinases VEGFR1, VEGFR2, PDGFRa, PDGFRß and c-Kit on HER2- and HER2+ breast cancer cell lines


2020 ◽  
Vol 21 (1) ◽  
pp. 42-60
Author(s):  
Farah Nawaz ◽  
Ozair Alam ◽  
Ahmad Perwez ◽  
Moshahid A. Rizvi ◽  
Mohd. Javed Naim ◽  
...  

Background: The Epidermal Growth Factor Receptor (known as EGFR) induces cell differentiation and proliferation upon activation through the binding of its ligands. Since EGFR is thought to be involved in the development of cancer, the identification of new target inhibitors is the most viable approach, which recently gained momentum as a potential anticancer therapy. Objective: To assess various pyrazole linked pyrazoline derivatives with carbothioamide for EGFR kinase inhibitory as well as anti-proliferative activity against human cancer cell lines viz. A549 (non-small cell lung tumor), MCF-7 (breast cancer cell line), SiHa (cancerous tissues of the cervix uteri), and HCT-116 (colon cancer cell line). Methods: In vitro EGFR kinase assay, in vitro MTT assay, Lactate dehydrogenase release, nuclear staining (DAPI), and flow cytometry cell analysis. Results: Compounds 6h and 6j inhibited EGFR kinase at concentrations of 1.66μM and 1.9μM, respectively. Furthermore, compounds 6h and 6j showed the most potent anti-proliferative results against the A549 KRAS mutation cell line (IC50 = 9.3 & 10.2μM). Through DAPI staining and phase contrast microscopy, it was established that compounds 6h and 6j also induced apoptotic activity in A549 cells. This activity was further confirmed by FACS using Annexin-V-FITC and Propidium Iodide (PI) labeling. Molecular docking studies performed on 6h and 6j suggested that the compounds can bind to the hinge region of ATP binding site of EGFR tyrosine kinase in a similar pose as that of the standard drug gefitinib. Conclusion: The potential anticancer activity of compounds 6h and 6j was confirmed and need further exploration in cancer cell lines of different tissue origin and signaling pathways, as well as in animal models of cancer development.


2018 ◽  
Vol 24 (3) ◽  
pp. 242-263 ◽  
Author(s):  
David A. Close ◽  
Allen Xinwei Wang ◽  
Stanton J. Kochanek ◽  
Tongying Shun ◽  
Julie L. Eiseman ◽  
...  

Animal and clinical studies demonstrate that cancer drug combinations (DCs) are more effective than single agents. However, it is difficult to predict which DCs will be more efficacious than individual drugs. Systematic DC high-throughput screening (HTS) of 100 approved drugs in the National Cancer Institute’s panel of 60 cancer cell lines (NCI-60) produced data to help select DCs for further consideration. We miniaturized growth inhibition assays into 384-well format, increased the fetal bovine serum amount to 10%, lengthened compound exposure to 72 h, and used a homogeneous detection reagent. We determined the growth inhibition 50% values of individual drugs across 60 cell lines, selected drug concentrations for 4 × 4 DC matrices (DCMs), created DCM master and replica daughter plate sets, implemented the HTS, quality control reviewed the data, and analyzed the results. A total of 2620 DCMs were screened in 60 cancer cell lines to generate 3.04 million data points for the NCI ALMANAC (A Large Matrix of Anti-Neoplastic Agent Combinations) database. We confirmed in vitro a synergistic drug interaction flagged in the DC HTS between the vinca-alkaloid microtubule assembly inhibitor vinorelbine (Navelbine) tartrate and the epidermal growth factor-receptor tyrosine kinase inhibitor gefitinib (Iressa) in the SK-MEL-5 melanoma cell line. Seventy-five percent of the DCs examined in the screen are not currently in the clinical trials database. Selected synergistic drug interactions flagged in the DC HTS described herein were subsequently confirmed by the NCI in vitro, evaluated mechanistically, and were shown to have greater than single-agent efficacy in mouse xenograft human cancer models. Enrollment is open for two clinical trials for DCs that were identified in the DC HTS. The NCI ALMANAC database therefore constitutes a valuable resource for selecting promising DCs for confirmation, mechanistic studies, and clinical translation.


Author(s):  
ATISH BARUA ◽  
PRITHA CHOUDHURY ◽  
CHINMAY KUMAR PANDA ◽  
PROSENJIT SAHA

Objective: Swertia chirata forms a rich source of bio-active compounds, among which xanthones form an important part. Among the xanthones present in it, 1,5,8 Tri-hydroxy-3-methoxy xanthone (TMX) was found to be the most active. The present study aims to evaluate the chemotherapeutic potential of it against metastatic skin cancer cell lines. Methods: In this study, the antitumor activity of TMX (the active component of chirata plant) was evaluated in A431, SKMEL-5, and A375 cell line by using in-vitro assays such as cell viability assay, cell cycle analysis, caspase 3 activity assay, intracellular reactive oxygen species (ROS) level determination by dichlorofluorescein diacetate, and quantitative real-time polymerase chain reaction (qRT-PCR). Results: In vitro studies showed that TMX from S. chirata exhibited significant antitumor activity by inducing apoptosis and restricting proliferation in both melanoma and non-melanoma skin cancer cell lines, but no such activity was seen in normal skin cancer cell line WS1. The qRT-PCR analysis revealed that in both the melanoma ad non-melanoma cell lines, TMX could exert its antitumor activity by downregulating c-Myc, cyclin-D1, and β-catenin and up-regulating Wnt antagonist gsk-3β, thereby suppressing wnt self-renewal pathway, but such regulation was absent in normal cell line. Conclusions: TMX from chirata could effectively inhibit the proliferation of metastatic skin cancer (both melanoma and non-melanoma) cell lines while being non-toxic to normal cell lines. The chemotherapeutic potential of TMX against metastatic skin cancer cell lines was achieved by downregulating several key regulatory genes enabling the suppression of the self-renewal pathway, the chief reason behind the invasiveness of cancer cells.


2000 ◽  
Vol 68 (4) ◽  
pp. 369-377 ◽  
Author(s):  
S.N. Pandeya ◽  
P. Yogeeswari ◽  
E.A. Sausville ◽  
A.B. Mauger ◽  
V.L. Narayanan

Various 4-substituted phenyl semicarbazone derivatives were synthesized and evaluated in vitro by NCI in the 3-cell line, one dose primary anticancer assay. Three compounds showed significant activity against breast MCF7 cell line and were further evaluated for potential anticancer activity in an in vitro human disease-oriented tumour cell line screening panel that consisted of 60 human tumour cell lines arranged in nine subpanels, representing diverse histologies. Leukemia, colon, ovarian and breast cancer cell lines were relatively more sensitive to these compounds than the other cell lines. The 4-carboxy substituted p-nitrobenzylidene phenyl semicarbazone (1c) emerged as the most active compound with average GI50 value (the molar drug concentration required for the 50% growth inhibition) of 28.6µM. This compound showed greater activity than methotrexate against NCI-H226(Lung), BT-549 and T-47D(Breast) cancer cell lines.


BMC Cancer ◽  
2016 ◽  
Vol 16 (1) ◽  
Author(s):  
Einav Ratzon ◽  
Yousef Najajreh ◽  
Rami Salem ◽  
Hazem Khamaisie ◽  
Martin Ruthardt ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document