scholarly journals Analysis of potential energy and environmental impact from coal gasification through simulation of plasma gasification process of Indonesian low-rank coal

2021 ◽  
Vol 24 (1) ◽  
pp. 57-70
Author(s):  
Priyo Sesotyo ◽  
◽  
Muhammad Nur ◽  
Oki Muraza ◽  
◽  
...  

Indonesia's coal reserve is abundant with its lower price and widely distributed than oil and natural gas. However, the coal emits high carbon dioxide gas (CO2) and sulfur compounds (H2S, SOx) to the environment during utilization. Plasma gasification can overcome those lacks using the external electric energy through a plasma torch. The chemical properties of coal have impacts on the energy content and environmental benchmarking. Using steam as a gasifying agent should be adequate to produce H2 and CO syngas. A research has been carried out to analyze and understand the benefit of using different gasifying agent for maximizing the H2 production and minimizing the environmental impact. Pure Steam (PS) gasifying agent to coal ratio of 0.4 has shown 43.76% H2 composition in syngas and cold gasification efficiency (CGE) with 37.71%. The PS to coal ratio of 0.2 has a significant carbon conversion efficiency of 4.75% and the PS to coal ratio of 0.6 has a gross energy potential of 86.5 kW. Using such the PS is significantly better than the mixture of steam oxygen (SO) as the gasifying agent since it needs to have a greater SO flow rate to have the SO to coal ratio of 1.00.

2021 ◽  
Vol 15 (1) ◽  
pp. 50-60
Author(s):  
Cláudia C. Santos ◽  
Janaine dos A. Oliveira ◽  
Igor de A. Barbieri ◽  
Filipe A. E Monhol

This study evaluates the co-gasification of the main residues of the sugarcane industry (vinasse, bagasse and straw), in order to recover their energy and give an appropriate destination, making them suitable for use as fuel gas (syngas). To verify the feasibility of energy conversion through gasification, thermodynamic equilibrium model for gasification process was carried out and verified by literature available data. The gasification parameters for different gasification agents and equivalence ratio values were then obtained, such as: syngas composition and energy content, operating temperature, production rate and conversion efficiency. For equivalence ratios (ER) between 0.35 and 0.4 and temperatures around 750 °C, the quality of the syngas obtained is better, but a higher energy content is obtained in ER values of 0.2. There is a high H2/CO ratio for the gasifying agent formed by air and steam, and when using oxygen-enriched air, there is a change in the ER value that generates better syngas quality (to 0.3–0.35) and an increase in its energy content. There is also a possible better return on investment in a thermoelectric plant for the lowest ER values, which can increase gains by up to 21.4% and decrease the installation’s payback. The results indicate that the co-gasification of the waste is feasible, allowing a better use of its energy potential.


2017 ◽  
Vol 740 ◽  
pp. 163-172 ◽  
Author(s):  
Kamariah Md Isa ◽  
Kahar Osman ◽  
Nor Fadzilah Othman ◽  
Nik Rosli Abdullah ◽  
Mohd Norhakem Hamid

A multiphase Eulerian- eulerian model integrating the kinetic theory of granular particle (KTGF) was used to simulate the gasification of Malaysian low- rank coal (LRC), Merit- Pila inside a bubbling fluidised bed (BFB) gasifier. The model used includes the bubbling phenomenon and gasificationprocess that occurs inside a BFB gasifier. The gasification process simulated includes drying, heterogeneous reactions of char combustion, devolatilization, water- gas shift reaction, Boudourd reactionand gas phase homogenous reactions. The results from this model are compared to the results of Merit-Pila coal gasification, from which experimental data is available. Comparison of the pressure profile shows good agreement with experimental results. The temperature distribution shows that the maximum temperature is around 1100K which also shows good agreement with experimental values which is 1087K. Besides that, three out of six species mass fraction which is N2, H2 and CH4 produced similar values with experimental values. This shows the simulation conducted was capable to predict the gasification process of Low- rank coal, namely Merit-Pila.


Resources ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 111
Author(s):  
Barbara Bielowicz ◽  
Jacek Misiak

In this paper, we discuss the impact of the rank of coal, petrographic composition, and physico-chemical coal properties on the release and composition of syngas during coal gasification in a CO2 atmosphere. This study used humic coals (parabituminous to anthracite) and lithotypes (bright coal and dull coal). Gasification was performed at temperatures between 600 and 1100 °C. It was found that the gas release depends on the temperature and rank of coal, and the reactivity increases with the increasing rank of coal. It was shown that the coal lithotype does not affect the gas composition or the process. Until 900 °C, the most intense processes were observed for higher rank coals. Above 1000 °C, the most reactive coals had a vitrinite reflectance of 0.5–0.6%. It was confirmed that the gasification of low-rank coal should be performed at temperatures above 1000 °C, and the reactivity of coal depends on the petrographic composition and physico-chemical features. It was shown that inertinite has a negative impact on the H2 content; at 950 °C, the increase in H2 depends on the rank of coal and vitrinite content. The physicochemical properties of coal rely on the content of maceral groups and the rank of coal. An improved understanding these relationships will allow the optimal selection of coal for gasification.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Venkata Ravi Sankar Cheela ◽  
Michele John ◽  
Brajesh Dubey

AbstractLandfills are urban stocks and resource reservoirs for potential energy recovery. The purpose of this study is to evaluate the amount of energy that could be recovered from aged waste (around 5–20 yr old) recovered from landfills. Investigations were conducted on the physical and chemical properties of refuse-derived fuel (RDF) prepared from recovered landfill waste (RLW) in Andhra Pradesh, India. Waste characterization studies include determination of waste composition, proximity analysis, ultimate analysis, and energy content. The moisture content ranged between 25.7 to 31.3% and no trend was observed with age. In the ultimate analysis, the percentage of carbon increased from 42.9 to 71.7% with the age of the samples, this is due to an increase in the plastic content over time. The calorific value of the recovered landfill waste ranged from 10.4 to 21.8 MJ kg− 1. From the findings, it can be summarized that the RDF can potentially be utilized as a feedstock for the recovery of energy from RLW. The results from this study will assist policy makers and local authorities in designing and developing strategies for resource and energy recovery from landfills in different urban cites across the globe.


2021 ◽  
Author(s):  
V R Sankar Cheela ◽  
Michele John ◽  
Brajesh Dubey

Abstract Landfills are urban stocks and resource reservoirs for potential energy recovery. The purpose of this study is to evaluate the amount of energy that could be recovered from aged waste (around 5-20 yr old) recovered from landfills. Investigations were conducted on the physical and chemical properties of refuse-derived fuel (RDF) prepared from recovered landfill waste (RLW) in Andhra Pradesh, India. Waste characterization studies included determination of waste composition, proximity analysis, ultimate analysis, and energy content. The moisture content ranged between 25.7 to 31.3%, however, no trend was observed with age. In the ultimate analysis, the percentage of carbon increased from 42.9 to 71.7% with the age of the samples, this is due to an increase in the plastic content over time. The calorific value of the recovered landfill waste ranged from 10.4 to 21.8 MJ kg-1. From the findings, it can be summarized that the RDF can potentially be utilized as a feedstock for the recovery of energy from RLW. The results from this study will assist policy makers and local authorities in designing and developing strategies for resource and energy recovery from landfills in different urban cites across the globe.


2020 ◽  
Author(s):  
V R Sankar Cheela ◽  
Michele John ◽  
Brajesh Dubey

Abstract Landfills are urban stocks and resource reservoirs for potential energy recovery. The purpose of this study is to evaluate the amount of energy that could be recovered from aged waste (around 5 - 20 years old) recovered from landfills. Investigations were conducted on the physical and chemical properties of refuse-derived fuel (RDF) prepared from recovered landfill waste (RLW) in Andhra Pradesh, India. Waste characterization studies included determination of waste composition, proximity analysis, ultimate analysis, and energy content. The moisture content ranged between 25.70 to 31.30%, however, no trend was observed with age. In the ultimate analysis, the percentage of carbon increased from 42.94% to 71.66% with the age of the samples, this is due to an increase in the plastic content over time. The calorific value of the recovered landfill waste ranged from 10.35 MJ/kg to 21.83 MJ/kg. From the findings, it can be summarized that the RDF can potentially be utilized as a feedstock for the recovery of energy from RLW. The results from this study will assist policy makers and local authorities in designing and developing strategies for resource and energy recovery from landfills in different urban cites across the globe.


2020 ◽  
Author(s):  
V R Sankar Cheela ◽  
Michele John ◽  
Brajesh Dubey

Abstract Landfills are urban stocks and resource reservoirs for potential energy recovery. The purpose of this study is to evaluate the amount of energy that could be recovered from aged waste (around 5 - 20 years old) recovered from landfills. Investigations were conducted on the physical and chemical properties of refuse-derived fuel (RDF) prepared from recovered landfill waste (RLW) in Andhra Pradesh, India. Waste characterization studies included determination of waste composition, proximity analysis, ultimate analysis, and energy content. The moisture content ranged between 25.70 to 31.30%, however, no trend was observed with age. In the ultimate analysis, the percentage of carbon increased from 42.94% to 71. 66% with the age of the samples, this is due to an increase in the plastic content over time. The calorific value of the recovered landfill waste ranged from 10.35 MJ/kg to 21.83 MJ/kg. From the findings, it can be summarized that the RDF can potentially be utilized as a feedstock for the recovery of energy from RLW. The results from this study will assist policy makers and local authorities in designing and developing strategies for resource and energy recovery from landfills in different urban cites across the globe.


2019 ◽  
Vol 23 (5 Part B) ◽  
pp. 3275-3282
Author(s):  
David Petrovic ◽  
Dusko Djukanovic ◽  
Dragana Petrovic ◽  
Igor Svrkota

Underground coal gasification, as an auto thermal process, includes processes of degasification, pyrolysis, and the gasification itself. These processes occur as a result of a high temperature and the management of coal combustion during addition of gasification agent. Air, water vapor mixed with air, air or water vapor enriched with oxygen, or pure oxygen, may be used as gasification agents. Resulting gas that is extracted in this process may vary in chemical composition, so it is necessary to adjust it. That is the reason why it is necessary to develop a mathematical model of the underground gasification process prior to any operations in coal deposit, in order to obtain as much accurate prediction of the process as possible. Numerical calculation provides prediction of gas mixture?s chemical composition, which enables calculation of gas components? energy contents and total energy content of the gas in predicted underground coal gasification process. It is one of the main criteria in the economic assessment of underground coal gasification process. This paper, based on available data on researches in this area, provides a contribution to creation of mathematical model of underground coal gasification.


Sign in / Sign up

Export Citation Format

Share Document