scholarly journals I-V characteristic behavior of BSCCO-2223 superconductor under low intensity DC magnetic fields a Home-Made Experiment

Author(s):  
Guilherme Botega Torsoni ◽  
Gustavo Quereza Freitas ◽  
Claudio Luis Carvalho

Electrical characterization of superconductor materials exposed to external magnetic field play a important role for many technological applications. In this paper, the electrical characterization of Bi-2223 pellet prepared by conventional route was performed. The electrical resistance temperaturedependence (RxT), showed a superconductor transition at around 105 K. The current-voltage (I-V) behavior under magnetic field and temperature has been investigated, the results point to a powerlaw dependence between the electrical current (I) and applied voltage (V), at different conditions, as described by the literature. The external DC magnetic field, was produced by a simple home-made apparatus, where a simple copper coil was used to produce an external DC magnetic field between 2,0 mT and 8,0 mT. Then, the dependence of the critical current (Ic) on magnetic field and temperature has been studied, revealing a double step behavior DOI:http://dx.doi.org/10.30609/JETI.2018-2.5682

1995 ◽  
Vol 391 ◽  
Author(s):  
W.F. Mcarthur ◽  
K.M. Ring ◽  
K.L. Kavanagh

AbstractThe feasibility of Si-implanted TiN as a diffusion barrier between Cu and Si was investigated. Barrier effectiveness was evaluated via reverse leakage current of Cu/TixSiyNz/Si diodes as a function of post-deposition annealing temperature and time, and was found to depend heavily on the film composition and microstructure. TiN implanted with Si28, l0keV, 5xl016ions/cm2 formed an amorphous ternary TixSiyNz layer whose performance as a barrier to Cu diffusion exceeded that of unimplanted, polycrystalline TiN. Results from current-voltage, transmission electron microscopy (TEM), and Auger depth profiling measurements will be presented. The relationship between Si-implantation dose, TixSiyNz structure and reverse leakage current of Cu/TixSiyNz/Si diodes will be discussed, along with implications as to the suitability of these structures in Cu metallization.


2013 ◽  
Vol 415 ◽  
pp. 77-81 ◽  
Author(s):  
Muhammad Tahir ◽  
Muhammad Hassan Sayyad ◽  
Fazal Wahab ◽  
Dil Nawaz Khan ◽  
Fakhra Aziz

1991 ◽  
Vol 235 ◽  
Author(s):  
Ying Wu ◽  
W. Savin ◽  
T. Fink ◽  
N. M. Ravindra ◽  
R. T. Lareau ◽  
...  

ABSTRACTExperimental analysis and simulation of the formation and electrical characterization of TiSi2/+/p-Si shallow junctions are presented here. The formation of shallow n+-p junction, by ion implantation of As through Ti films evaporated on p-Si substrates followed by Rapid Thermal Annealing (RTA) and conventional furnace annealing has been performed in these experiments. Structural techniques such as Secondary Ion Mass Spec-troscopy (SIMS) and Rutherford Backscattering (RBS) experiments have been employed to characterize these devices. RUMP simulations were used to analyze and interpret the RBS data. Current-voltage characteristics have been simulated using PISCES simulator.


2018 ◽  
Vol 96 (7) ◽  
pp. 816-825 ◽  
Author(s):  
H.H. Güllü ◽  
M. Terlemezoğlu ◽  
Ö. Bayraklı ◽  
D.E. Yıldız ◽  
M. Parlak

In this paper, we present results of the electrical characterization of n-Si/p-Cu–Zn–Se hetero-structure. Sputtered film was found in Se-rich behavior with tetragonal polycrystalline nature along with (112) preferred orientation. The band gap energy for direct optical transitions was obtained as 2.65 eV. The results of the conductivity measurements indicated p-type behavior and carrier transport mechanism was modelled according to thermionic emission theory. Detailed electrical characterization of this structure was carried out with the help of temperature-dependent current–voltage measurements in the temperature range of 220–360 K, room temperature, and frequency-dependent capacitance–voltage and conductance-voltage measurements. The anomaly in current–voltage characteristics was related to barrier height inhomogeneity at the interface and modified by the assumption of Gaussian distribution of barrier height, in which mean barrier height and standard deviation at zero bias were found as 2.11 and 0.24 eV, respectively. Moreover, Richardson constant value was determined as 141.95 Acm−2K−2 by means of modified Richardson plot.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Francisco Mederos-Henry ◽  
Sophie Hermans ◽  
Isabelle Huynen

This paper presents a novel approach for the characterization of microwave properties of carbon-based nanopowders, decorated or not with magnetic nanoparticles. Their microwave parameters, dielectric constant, electrical conductivity, and complex magnetic permeability are extracted from measurements performed using a single transmission line acting as a test cell. Two geometries of transmission line were tested, and successful results were obtained with each one of them. The measurement results are assessed by a phenomenological model enabling to fit the measurement of the dielectric constant and conductivity, providing an insight on the compacity quality of the powder sample. Also, the extraction of the permeability is validated by the detection of a ferromagnetic resonance showing a linear dependence on external DC magnetic field.


1996 ◽  
Vol 448 ◽  
Author(s):  
N. Marcano ◽  
A. Singh

AbstractIn/n-In0.46Ga0.54P Schottky diode was fabricated by thermal evaporation of In on chemically etched surface of In0.45Ga0.54P:Si epitaxial layer grown on highly doped n type GaAs. The In metal formed a high quality rectifying contact to In0.46Ga0.54P:Si with a rectification ratio of 500. The direct current-voltage/temperature (I-V/T) characteristics were non-ideal with the values of the ideality factor (n) between 1.26-1.78 for 400>T>260 K. The forward I-V data strongly indicated that the current was controlled by the generation-recombination (GR) and thermionic emission (TE) mechanisms for temperature in the range 260-400 K. From the temperature variation of the TE reverse saturation current, the values of (0.75±0.05)V and the (4.5±0.5)×10-5 Acm-2K-2 for the zero bias zero temperature barrier height (φoo) and modified effective Richardson constant were obtained. The 1 MHz capacitance-voltage (C-V) data for 260 K < T < 400 K was analyzed in terms of the C-2-V relation including the effect of interface layer to obtain more realistic values of the barrier height (φbo). The temperature dependence of φbo was described the relation φbo =(0.86±10.03) - (8.4±0.7)×l0-4T. The values of φoo, obtained by the I-V and C-V techniques agreed well.


1996 ◽  
Vol 458 ◽  
Author(s):  
Takeshi Harada ◽  
Yoshinobu Nakamura ◽  
Akira Kishimoto ◽  
Naobumi Motohira ◽  
Hiroaki Yanagida

ABSTRACTZinc oxide (ZnO) single crystals are grown by the traditional chemical vapor reaction method and ZnO crystal pairs with a single boundary are successfully obtained. The obtained specimens with one ZnO–ZnO boundary (ZnO homojunction) show nonlinear current-voltage (I–V) characteristics without the addition of Bi2O3, CoO, MnO2, and/or rare earth metal oxides. A specimen with higher breakdown voltage shows superior nonlinearity with negative resistivity in its I–V characteristics. Electrical characterization of the ZnO homojunction is conducted and extremely slow response with the current (or voltage) stress is confirmed. The phenomenon had never been observed in commercial ZnO varistors. The surface temperature of the ZnO homojunction is enhanced by larger applied current. The effect of the Joule heat on the nonlinearity in the I–V curves of the ZnO homojunction is discussed.


2006 ◽  
Vol 518 ◽  
pp. 235-240 ◽  
Author(s):  
M. Žunić ◽  
Z. Branković ◽  
G. Branković ◽  
D. Poleti

The effect of Co, Cr and Nb on the electrical properties of the grain boundaries of SnO2-based varistors was investigated. The powders were prepared by the method of evaporation and decomposition of solutions and suspensions. Varistor samples were obtained by uniaxial pressing followed by sintering at 1300 °C for 1h. The electrical properties of the grain-boundary region, such as resistance (R) and capacitance (C), were determined using ac impedance spectroscopy in the 27-330 °C temperature interval. Activation energies for conduction (EA) were calculated from the Arrhenius equation. The non-linear coefficients (α) and the breakdown electric fields (Eb) of the samples were determined from the current-voltage characteristics. The potential barrier height (Φb) was calculated using the Schottky-type conducting model. After a comparison of the characteristic parameters for different varistor compositions it was found that the Cr/Nb ratio has a crucial influence on the grain-boundary properties in SnO2 varistors.


Author(s):  
Yiran WANG ◽  
Teng XU ◽  
Gengbin TAN ◽  
Hailong CHEN ◽  
Tao LI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document