Structural and Electrical Characterization of Si-Implanted TiN as a Diffusion Barrier for Cu Metallization

1995 ◽  
Vol 391 ◽  
Author(s):  
W.F. Mcarthur ◽  
K.M. Ring ◽  
K.L. Kavanagh

AbstractThe feasibility of Si-implanted TiN as a diffusion barrier between Cu and Si was investigated. Barrier effectiveness was evaluated via reverse leakage current of Cu/TixSiyNz/Si diodes as a function of post-deposition annealing temperature and time, and was found to depend heavily on the film composition and microstructure. TiN implanted with Si28, l0keV, 5xl016ions/cm2 formed an amorphous ternary TixSiyNz layer whose performance as a barrier to Cu diffusion exceeded that of unimplanted, polycrystalline TiN. Results from current-voltage, transmission electron microscopy (TEM), and Auger depth profiling measurements will be presented. The relationship between Si-implantation dose, TixSiyNz structure and reverse leakage current of Cu/TixSiyNz/Si diodes will be discussed, along with implications as to the suitability of these structures in Cu metallization.

2005 ◽  
Vol 483-485 ◽  
pp. 625-628 ◽  
Author(s):  
Fabio Bergamini ◽  
Francesco Moscatelli ◽  
Mariaconcetta Canino ◽  
Antonella Poggi ◽  
Roberta Nipoti

We report on the electrical characterization of Al+ implanted p+/n 4H-SiC diodes via a planar technology. Hot implantation at 400°C and post implantation annealing at 1600°C and 1650°C in high purity Argon ambient were done for the realization of p+/n diodes. The current voltage characteristics of the p+/n diodes and the resistivity of the implanted layer were measured at room temperature. The majority of the 136 measured diodes had a turn on voltage of 1.75 V for both annealing temperatures. The 1600°C annealed diodes showed an almost exponential forward characteristic with ideality factor equal to 1.4, an average reverse leakage current density equal to (4.8 ± 0.1)×10-9 A/cm2 at –100 V, and a break down voltage between 600 and 900V. The 1650°C annealed diodes often had forward “excess current component” that deviates from the ideal forward exponential trend. The average reverse leakage current density was equal to (2.7 ± 0.5)×10-8 A/cm2 at –100 V, and the breakdown voltage was between 700 and 1000V, i.e. it approached the theoretical value for the epitaxial 4H-SiC layer.


1996 ◽  
Vol 441 ◽  
Author(s):  
G. Sade ◽  
J. Pelleg ◽  
A. Grisaru

AbstractThe TiB2/TiSi2 bilayer is considered as a diffusion barrier in metallization system with Cu. The TiSi2 sublayer serves as a contact and also as an additional diffusion barrier against boron, which outdiffuses from TiB2 at high temperature annealing. The attempts to form TiSi2 by vacuum annealing of TiB2/Ti film, which was obtained by co-sputtering from elemental targets are described. The composition and the structure of the films were analyzed by Auger electron spectroscopy (AES), X-ray diffraction (XRD) and high-resolution cross-sectional TEM (HRXTEM). The Cu/TiB2/(Ti-Si)/n-Si contacts were investigated using current-voltage (I–V) on Schottky diode structures, which were prepared on n-type Si (100). The thermal stability of the TiB2/(Ti-Si) barrier was studied by structural and electrical analysis.It was observed that the lowest sheet resistance of 5.1 Ω/‪ was obtained after 850 °C annealing for 30 min, however the resulting Ti-Si layer is practically still amorphous and contains only a very small fraction of C54 TiSis in the form of microcrystallites. This layer also contained Ti5Si3 as indicated by XRD. The barrier height of Cu/TiB2/(Ti-Si)/n-Si Schottky diodes is ˜0.6 V and it does not show significant changes in the range 400–700 °C. Electrical monitoring is a very effective tool to detect deterioration of the barrier. No penetration is observed by AES at 700 °C, while the I–V curve shows changes in properties.


2009 ◽  
Vol 1178 ◽  
Author(s):  
Olivia Maria Berengue ◽  
Cleocir J. Dalmaschio ◽  
Tiago G. Conti ◽  
Adenilson J. Chiquito ◽  
Edson R. Leite

AbstractSn3O4 nanobelts were grown by a carbothermal evaporation process of SnO2 powders in association with the well known vapour-solid mechanism (VS). The nanobelts crystal structure was investigated by x-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), raman spectroscopy and field emission gun scanning electron microscopy (FEG-SEM). The structural and morphological characterization has confirmed the growth of single crystal nanobelts. The electrical characterization (current-voltage, temperature-dependent resistance curves) of individual Sn3O4 nanobelts was performed at different temperatures and light excitation. The experiments revealed a semiconductor – like character as evidenced by the resistance decreasing at high temperatures. The transport mechanism was identified as the variable range hopping.


2013 ◽  
Vol 415 ◽  
pp. 77-81 ◽  
Author(s):  
Muhammad Tahir ◽  
Muhammad Hassan Sayyad ◽  
Fazal Wahab ◽  
Dil Nawaz Khan ◽  
Fakhra Aziz

1991 ◽  
Vol 235 ◽  
Author(s):  
Ying Wu ◽  
W. Savin ◽  
T. Fink ◽  
N. M. Ravindra ◽  
R. T. Lareau ◽  
...  

ABSTRACTExperimental analysis and simulation of the formation and electrical characterization of TiSi2/+/p-Si shallow junctions are presented here. The formation of shallow n+-p junction, by ion implantation of As through Ti films evaporated on p-Si substrates followed by Rapid Thermal Annealing (RTA) and conventional furnace annealing has been performed in these experiments. Structural techniques such as Secondary Ion Mass Spec-troscopy (SIMS) and Rutherford Backscattering (RBS) experiments have been employed to characterize these devices. RUMP simulations were used to analyze and interpret the RBS data. Current-voltage characteristics have been simulated using PISCES simulator.


1995 ◽  
Vol 91 (1-4) ◽  
pp. 285-290 ◽  
Author(s):  
C. Ahrens ◽  
D. Depta ◽  
F. Schitthelm ◽  
S. Wilhelm

2018 ◽  
Vol 96 (7) ◽  
pp. 816-825 ◽  
Author(s):  
H.H. Güllü ◽  
M. Terlemezoğlu ◽  
Ö. Bayraklı ◽  
D.E. Yıldız ◽  
M. Parlak

In this paper, we present results of the electrical characterization of n-Si/p-Cu–Zn–Se hetero-structure. Sputtered film was found in Se-rich behavior with tetragonal polycrystalline nature along with (112) preferred orientation. The band gap energy for direct optical transitions was obtained as 2.65 eV. The results of the conductivity measurements indicated p-type behavior and carrier transport mechanism was modelled according to thermionic emission theory. Detailed electrical characterization of this structure was carried out with the help of temperature-dependent current–voltage measurements in the temperature range of 220–360 K, room temperature, and frequency-dependent capacitance–voltage and conductance-voltage measurements. The anomaly in current–voltage characteristics was related to barrier height inhomogeneity at the interface and modified by the assumption of Gaussian distribution of barrier height, in which mean barrier height and standard deviation at zero bias were found as 2.11 and 0.24 eV, respectively. Moreover, Richardson constant value was determined as 141.95 Acm−2K−2 by means of modified Richardson plot.


1996 ◽  
Vol 448 ◽  
Author(s):  
N. Marcano ◽  
A. Singh

AbstractIn/n-In0.46Ga0.54P Schottky diode was fabricated by thermal evaporation of In on chemically etched surface of In0.45Ga0.54P:Si epitaxial layer grown on highly doped n type GaAs. The In metal formed a high quality rectifying contact to In0.46Ga0.54P:Si with a rectification ratio of 500. The direct current-voltage/temperature (I-V/T) characteristics were non-ideal with the values of the ideality factor (n) between 1.26-1.78 for 400>T>260 K. The forward I-V data strongly indicated that the current was controlled by the generation-recombination (GR) and thermionic emission (TE) mechanisms for temperature in the range 260-400 K. From the temperature variation of the TE reverse saturation current, the values of (0.75±0.05)V and the (4.5±0.5)×10-5 Acm-2K-2 for the zero bias zero temperature barrier height (φoo) and modified effective Richardson constant were obtained. The 1 MHz capacitance-voltage (C-V) data for 260 K < T < 400 K was analyzed in terms of the C-2-V relation including the effect of interface layer to obtain more realistic values of the barrier height (φbo). The temperature dependence of φbo was described the relation φbo =(0.86±10.03) - (8.4±0.7)×l0-4T. The values of φoo, obtained by the I-V and C-V techniques agreed well.


2011 ◽  
Vol 1349 ◽  
Author(s):  
Thomas Hantschel ◽  
Xiaoxing Ke ◽  
Nicolo’ Chiodarelli ◽  
Andreas Schulze ◽  
Hugo Bender ◽  
...  

ABSTRACTThe use of carbon nanotubes (CNT) as interconnects in future integrated circuits (IC) is being considered as a replacement for copper. As this research needs also innovative metrology solutions, we have developed a combined approach for the plane-view analysis of CNT integrated in contact holes where transmission electron microscopy (TEM) enables the quantitative measurement of density and structure of the CNT and where scanning spreading resistance microscopy (SSRM) is used to electrically map the distribution of the CNT. This paper explains the used methodologies in detail and presents results from 300 nm diameter contact holes filled with CNT of 8-12 nm in diameter and a density of about 2 x 1011 cm-2.


Sign in / Sign up

Export Citation Format

Share Document