Process and Simulation of TiSi2/n+/p Silicon Shallow Junctions

1991 ◽  
Vol 235 ◽  
Author(s):  
Ying Wu ◽  
W. Savin ◽  
T. Fink ◽  
N. M. Ravindra ◽  
R. T. Lareau ◽  
...  

ABSTRACTExperimental analysis and simulation of the formation and electrical characterization of TiSi2/+/p-Si shallow junctions are presented here. The formation of shallow n+-p junction, by ion implantation of As through Ti films evaporated on p-Si substrates followed by Rapid Thermal Annealing (RTA) and conventional furnace annealing has been performed in these experiments. Structural techniques such as Secondary Ion Mass Spec-troscopy (SIMS) and Rutherford Backscattering (RBS) experiments have been employed to characterize these devices. RUMP simulations were used to analyze and interpret the RBS data. Current-voltage characteristics have been simulated using PISCES simulator.

2013 ◽  
Vol 415 ◽  
pp. 77-81 ◽  
Author(s):  
Muhammad Tahir ◽  
Muhammad Hassan Sayyad ◽  
Fazal Wahab ◽  
Dil Nawaz Khan ◽  
Fakhra Aziz

2006 ◽  
Vol 518 ◽  
pp. 235-240 ◽  
Author(s):  
M. Žunić ◽  
Z. Branković ◽  
G. Branković ◽  
D. Poleti

The effect of Co, Cr and Nb on the electrical properties of the grain boundaries of SnO2-based varistors was investigated. The powders were prepared by the method of evaporation and decomposition of solutions and suspensions. Varistor samples were obtained by uniaxial pressing followed by sintering at 1300 °C for 1h. The electrical properties of the grain-boundary region, such as resistance (R) and capacitance (C), were determined using ac impedance spectroscopy in the 27-330 °C temperature interval. Activation energies for conduction (EA) were calculated from the Arrhenius equation. The non-linear coefficients (α) and the breakdown electric fields (Eb) of the samples were determined from the current-voltage characteristics. The potential barrier height (Φb) was calculated using the Schottky-type conducting model. After a comparison of the characteristic parameters for different varistor compositions it was found that the Cr/Nb ratio has a crucial influence on the grain-boundary properties in SnO2 varistors.


1997 ◽  
Vol 487 ◽  
Author(s):  
J. E. Toney ◽  
B. A. Brunett ◽  
T. E. Schlesinger ◽  
E. Cross ◽  
F. P. Doty ◽  
...  

AbstractWe have used low-temperature photoluminescence spectroscopy and photo-induced current transient spectroscopy to study the properties of copper-doped Cd1−xZnxTe with x=0.1 and chlorine-doped Cd1−xZnxTe with x=0.2, 0.35 and 0.5. The current-voltage characteristics and detector response were also measured. We observed variations in charge collection and resistivity in the Cu-doped samples which was correlated with variations in PICTS spectra. The Cl-doped material was found to have insufficient resistivity for detector operation.


2015 ◽  
Vol 33 (4) ◽  
pp. 669-676 ◽  
Author(s):  
Piotr Firek ◽  
Michał Wáskiewicz ◽  
Bartłomiej Stonio ◽  
Jan Szmidt

AbstractThis work presents the investigations of AlN thin films deposited on Si substrates by means of magnetron sputtering. Nine different sputtering processes were performed. Based on obtained results, the tenth process was prepared and performed (for future ISFET structures manufacturing). Round aluminum (Al) electrodes were evaporated on the top of deposited layers. The MIS capacitor structures enabled a subsequent electrical characterization of the AlN films by means of current-voltage (I-V) and capacitance-voltage (C-V) measurements. Based on these results, the main parameters of investigated layers were obtained. Moreover, the paper describes the technology of fabrication and electrical characterization of ISFET transistors and possibility of their application as ion sensors.


2002 ◽  
Vol 719 ◽  
Author(s):  
I. Salama ◽  
N. R Quick ◽  
A. Kar ◽  
Gilyong Chung

AbstractHighly conductive tracks are generated in low-doped epilayers on 4H-SiC wafers using a laserdirect write technique. The current-voltage characteristics are measured to study the effect of the applied voltage on the electric resistance and the surface contact of the irradiated tracks. The effect of multiple irradiations on the electronic properties of the fabricated tracks was investigated and compared with the effect of the conventional annealing process. A laser doping process was used to achieve n-type as well as p-type impurity doping in the substrate. The electronic properties of the doped tracks are measured and compared with those of the untreated wafers. Microstructural observation and surface analysis of the irradiated tracks are studied. Laser fabrication of rectifying contact on SiC substrates is demonstrated.


1990 ◽  
Vol 181 ◽  
Author(s):  
Bhupen Shah ◽  
N.M. Ravindra

ABSTRACTModelling of temperature dependent current-voltage characteristics of TiSi2/n+/p-Si shallow junctions has been presented here. The formation of shallow pn junctions, by ion implantation of As+ through Ti films evaporated on p-Si substrates has been performed in these experiments. The temperature dependent factors such as band gap narrowing, intrinsic carrier concentration, mobilities and diffusivities are considered in the model.


2005 ◽  
Vol 483-485 ◽  
pp. 625-628 ◽  
Author(s):  
Fabio Bergamini ◽  
Francesco Moscatelli ◽  
Mariaconcetta Canino ◽  
Antonella Poggi ◽  
Roberta Nipoti

We report on the electrical characterization of Al+ implanted p+/n 4H-SiC diodes via a planar technology. Hot implantation at 400°C and post implantation annealing at 1600°C and 1650°C in high purity Argon ambient were done for the realization of p+/n diodes. The current voltage characteristics of the p+/n diodes and the resistivity of the implanted layer were measured at room temperature. The majority of the 136 measured diodes had a turn on voltage of 1.75 V for both annealing temperatures. The 1600°C annealed diodes showed an almost exponential forward characteristic with ideality factor equal to 1.4, an average reverse leakage current density equal to (4.8 ± 0.1)×10-9 A/cm2 at –100 V, and a break down voltage between 600 and 900V. The 1650°C annealed diodes often had forward “excess current component” that deviates from the ideal forward exponential trend. The average reverse leakage current density was equal to (2.7 ± 0.5)×10-8 A/cm2 at –100 V, and the breakdown voltage was between 700 and 1000V, i.e. it approached the theoretical value for the epitaxial 4H-SiC layer.


e-Polymers ◽  
2016 ◽  
Vol 16 (1) ◽  
pp. 75-82
Author(s):  
Haci Ökkes Demir ◽  
Zakir Caldıran ◽  
Kadem Meral ◽  
Yılmaz Şahin ◽  
Murat Acar ◽  
...  

AbstractA poly(phenoxy-imine)/p-silicon rectifying device was fabricated and the current-voltage characteristics of the device were examined as a function of temperature in the 40–300 K range. The temperature dependence of the main parameters, namely, the barrier height (Φb), ideality factor (η), reverse current (I0) and series resistance (Rs), were investigated. It was seen that the Φb and the I0 values of the device increased with increasing temperature, while the η and the Rs values decreased. The temperature dependences of the Φb and the η were interpreted by the assumption of a Gaussian distribution of the barrier heights arising from barrier inhomogeneities that prevailed at the interface of the poly(phenoxyimine)/p-silicon. From ln(I0/T2) vs. 1/ηT plot, the values of the activation energy (Ea) and Richardson constant (A*) were calculated as 0.324 eV and 2.84×10-7 A cm-2K-2, respectively. The experimental value of the Rs from the forward current-voltage plots decreased with an increase in the temperature.


2013 ◽  
Vol 27 (11) ◽  
pp. 1350080 ◽  
Author(s):  
MUHAMMAD TAHIR ◽  
MUHAMMAD HASSAN SAYYAD ◽  
FAZAL WAHAB ◽  
DIL NAWAZ KHAN

This paper reports the fabrication of Ag / N - BuHHPDI /p- Si heterojunction diode by evaporating a layer of organic compound N-Butyl-N'-(6-hydroxyhexyl) perylene-3,4,9,10-tetracarboxylicacid-diimide (N-BuHHPDI) on top of the p- Si . The electronic properties of the heterojunction have been studied, in dark at a temperature of 300 K, by conventional current–voltage (I–V) method, Norde's method and Cheung's technique. By analyzing conventional I–V characteristics, the device exhibited rectifying behavior with a rectification ratio of 62.67 at ± 5.8 V. From the forward biased I–V measurements, the barrier height and ideality factor values of 0.83 eV and 6.4, respectively, have been obtained. Different diode parameters such as series resistance, shunt resistance, reverse saturation current and turn on voltage have been extracted from the I–V measurements. The parameters calculated from Norde's and Cheung's methods are found to be in good agreement with those calculated from conventional I–V measurements. Morphology of the N-BuHHPDI film is investigated using atomic force microscope (AFM).


Sign in / Sign up

Export Citation Format

Share Document