scholarly journals Protocols for 3D-printing pieces by fused deposition modeling for research purposes: from modeling to post-printing treatment

2020 ◽  
Vol 3 (01) ◽  
pp. 1-11
Author(s):  
Katia-Emiko Guima ◽  
Felipe L. B. Fialho ◽  
Cauê Alves Martins

Additive manufacturing or 3D-printing is a revolutionary technique for prototyping and building objects for final use. Since the first registers at ~1890 the improved technology has boosted the applications of such technique, decreasing its market price. The most affordable 3D-print technique is Fuse Deposition Modeling (FDM), which is based on a layer-by-layer deposition of a fused polymer on a cooled table. Although FDM has been used by industrials, students and researchers, there are few published protocols dealing with small challenges and daily problems. Here we use a basic object to detail pre- and post-printing steps. This technical note offers the reader tools to model, print and treat the 3D-object. We point out basic challenges, such as positioning the objects on the virtual table of the slicing software, that may lead towards undesirable printed pieces. The protocols described here do not cover the uncountable possibilities of 3D-printing by FDM, but surely help researchers and industrials to start working with it.   DOI: http://dx.doi.org/10.30609/JETI.2020-8625

2020 ◽  
Vol 1 (2) ◽  
pp. 81-91
Author(s):  
Frince Marbun ◽  
Richard A.M. Napitupulu

3D printing technology has great potential in today's manufacturing world, one of its uses is in making miniatures or prototypes of a product such as a piston. One of the most famous and inexpensive 3D printing (additive manufacturing) technologies is Fused Deposition Modeling (FDM), the principle FDM works by thermoplastic extrusion through a hot nozzle at melting temperature then the product is made layer by layer. The two most commonly used materials are ABS and PLA so it is very important to know the accuracy of product dimensions. FDM 3D Printing Technology is able to make duplicate products accurately using PLA material. FDM machines work by printing parts that have been designed by computer-aided design (CAD) and then exported in the form of STL or .stl files and uploaded to the slicer program to govern the printing press according to the design. Using Anet A8 brand 3D printing tools that are available to the public, Slicing of general CAD geometry files such as autocad and solidwork is the basis for making this object. This software is very important to facilitate the design process to be printed. Some examples of software that can be downloaded and used free of charge such as Repetier-Host and Cura. by changing the parameters in the slicer software is very influential in the 3D printing manufacturing process.


2021 ◽  
Author(s):  
Mobina Movahedi

Additive manufacturing (AM), 3D printing, is defined as a process of depositing materials layer by layer to create three-dimensional printed models, as opposed to subtractive manufacturing methodologies. It has the potential of revolutionizing field of manufacturing, which allows us to create more complex geometries with lower cost and faster speed in comparison to injection molding, compression forming, and forging. Therefore, 3D printing can shorten the design manufacturing cycle, reduce the production cost, and increase the competitiveness. Due to the improvements of processes and advancements of modeling and design, Fused Deposition Modeling (FDM) technologies, a common 3D printing technique, have been involved in wide various applications in the past three decades and numerous studies have been gathered. This research work studies directional properties of FDM 3D printed thermoplastic parts per ASTM D638. Tensile strength and modulus of the coupons along and perpendicular to the printing direction are evaluated. It is observed that FDM 3D printing introduces anisotropic behavior to the manufactured part, e.g. tensile strength of 57.7 and 30.8 MPa for loading along and perpendicular to the printing direction, respectively. FDM 3D printers are not ideal and introduce defects into the manufactured parts, e.g. in the form of missing material, gap. This study investigates the impact of gaps on tensile strength and modulus of 3D printed parts. A maximum reduction of 20% in strength is found for a gap (missing bead) along the loading direction.


2021 ◽  
Author(s):  
Mobina Movahedi

Additive manufacturing (AM), 3D printing, is defined as a process of depositing materials layer by layer to create three-dimensional printed models, as opposed to subtractive manufacturing methodologies. It has the potential of revolutionizing field of manufacturing, which allows us to create more complex geometries with lower cost and faster speed in comparison to injection molding, compression forming, and forging. Therefore, 3D printing can shorten the design manufacturing cycle, reduce the production cost, and increase the competitiveness. Due to the improvements of processes and advancements of modeling and design, Fused Deposition Modeling (FDM) technologies, a common 3D printing technique, have been involved in wide various applications in the past three decades and numerous studies have been gathered. This research work studies directional properties of FDM 3D printed thermoplastic parts per ASTM D638. Tensile strength and modulus of the coupons along and perpendicular to the printing direction are evaluated. It is observed that FDM 3D printing introduces anisotropic behavior to the manufactured part, e.g. tensile strength of 57.7 and 30.8 MPa for loading along and perpendicular to the printing direction, respectively. FDM 3D printers are not ideal and introduce defects into the manufactured parts, e.g. in the form of missing material, gap. This study investigates the impact of gaps on tensile strength and modulus of 3D printed parts. A maximum reduction of 20% in strength is found for a gap (missing bead) along the loading direction.


2020 ◽  
Vol 870 ◽  
pp. 73-80
Author(s):  
Nuha Hadi Jasim Al Hasan

3D printing innovation, as a quick prototyping, utilize plastic or metal as the crude material to print the genuine parts layer by layer. In this way, it is likewise called added substance producing procedure. Contrasted and conventional assembling innovation, 3D printing innovation has evident points of interest in assembling items with complex shapes and structures. Fused deposition modeling (FDM) is one of the most broadly utilized 3D printing advances. Fibers of thermoplastic materials, for example, polylactic acid is for the most part utilized as crude materials. The present examination will concentrate on the effect of the infill density, percent on the flexural strength of polylactic acid. Bending test was performed on different infill density, percent of specimens. According to ASTM D638.14 standards, samples for testing are made in different infill density, percent (20, 30, 40, 50 and 60 %) by using a polylactic acid in 3D machine printing and their tensile tested and the parameters include different fill density, layer high of 0.1 mm , 0.2mm and 0.3 have an effect on the mechanical characterized while the time of printing the sample would be increased with increasing of fill density%. The tensile strength of polylactic acid samples was found at different fill density and a layer thickness. According to test measuring results that the tensile strength, maximum 47.1,47.4, and 48 MPa at 30%,40%,and 50% fill density respectively and 0.1mm height layer and the tensile strength minimum at 60% and 70 % fill density and 0.1 mm height layer thickness. The higher strength results as higher layer thickness 0.3 mm as compared with 0.1 and 0.2 at 30%fill density.


Author(s):  
Sara M. Damas ◽  
Cameron J. Turner

Abstract Additive manufacturing methods are becoming more prominent in the world of design and manufacturing due to their reduction of material waste versus traditional machining methods such as milling. The technology to 3D print has been around since the 1970’s. In today’s present time, we now can multi-material 3D print, however. even though we have the technology for multi-material 3D printing, standards in this field are severely lacking. Research on multi-material 3D printing and/or the combination of 3D printing filaments combined with nanoparticles is needed. One of the most common methods of 3D printing is fused deposition modeling (FDM). In this research, FDM was used to dope Acrylonitrile Butadiene Styrene (ABS), to introduce conductive properties for strain measurements. The researchers in this paper used N-Methyl-2-Pyrrolidinone (NMP) to bind the selected nanoparticles. In the first experiment the researchers tested the conductivity of the strain gages, while in the next experiment they studied the effect the various nanoparticles had on the stiffness of the 3D printed ABS strain gages. This extensive and detailed study concluded several points. First, nickel nanoparticles consistently yields the least amount of resistance. Second, multiple binder doped nanoparticle layers yield the lowest resistance. Third, NMP, does indeed improve the performance of the nanoparticles. Finally, the research demonstrated that the various nanoparticles used, when bound increased the stiffness of the ABS strain gages.


2020 ◽  
Vol 861 ◽  
pp. 182-187
Author(s):  
Vinh Du Nguyen ◽  
Thai Xiem Trinh ◽  
Son Minh Pham ◽  
Trong Huynh Nguyen

Additive manufacturing (3D printing) is a hopeful technique that is used to produce complex geometry parts in a layer-by-layer method. Fused deposition modeling (FDM) is a popular 3D printing technology for producing components of thermoplastic polymers. In FDM process, the part quality is influenced strongly by the printing parameters. Until now, these parameters stil need to be investigated. Therefore, in this study, the influence of FDM 3D printing parameters on the tensile strength of product will be investigated. By experiment, three parameters, that is, layer height, solid layer top, and first-layer height, were studied. The investigation shows that the layer height is the only parameter impacted the tensile strength of the product.


Author(s):  
Michael A. Luzuriaga ◽  
Danielle R. Berry ◽  
John C. Reagan ◽  
Ronald A. Smaldone ◽  
Jeremiah J. Gassensmith

Biodegradable polymer microneedle (MN) arrays are an emerging class of transdermal drug delivery devices that promise a painless and sanitary alternative to syringes; however, prototyping bespoke needle architectures is expensive and requires production of new master templates. Here, we present a new microfabrication technique for MNs using fused deposition modeling (FDM) 3D printing using polylactic acid, an FDA approved, renewable, biodegradable, thermoplastic material. We show how this natural degradability can be exploited to overcome a key challenge of FDM 3D printing, in particular the low resolution of these printers. We improved the feature size of the printed parts significantly by developing a post fabrication chemical etching protocol, which allowed us to access tip sizes as small as 1 μm. With 3D modeling software, various MN shapes were designed and printed rapidly with custom needle density, length, and shape. Scanning electron microscopy confirmed that our method resulted in needle tip sizes in the range of 1 – 55 µm, which could successfully penetrate and break off into porcine skin. We have also shown that these MNs have comparable mechanical strengths to currently fabricated MNs and we further demonstrated how the swellability of PLA can be exploited to load small molecule drugs and how its degradability in skin can release those small molecules over time.


2019 ◽  
Vol 25 (11) ◽  
pp. 1249-1264 ◽  
Author(s):  
Amoljit Singh Gill ◽  
Parneet Kaur Deol ◽  
Indu Pal Kaur

Background: Solid free forming (SFF) technique also called additive manufacturing process is immensely popular for biofabrication owing to its high accuracy, precision and reproducibility. Method: SFF techniques like stereolithography, selective laser sintering, fused deposition modeling, extrusion printing, and inkjet printing create three dimension (3D) structures by layer by layer processing of the material. To achieve desirable results, selection of the appropriate technique is an important aspect and it is based on the nature of biomaterial or bioink to be processed. Result & Conclusion: Alginate is a commonly employed bioink in biofabrication process, attributable to its nontoxic, biodegradable and biocompatible nature; low cost; and tendency to form hydrogel under mild conditions. Furthermore, control on its rheological properties like viscosity and shear thinning, makes this natural anionic polymer an appropriate candidate for many of the SFF techniques. It is endeavoured in the present review to highlight the status of alginate as bioink in various SFF techniques.


2021 ◽  
Vol 14 (2) ◽  
pp. 143
Author(s):  
Julius Krause ◽  
Laura Müller ◽  
Dorota Sarwinska ◽  
Anne Seidlitz ◽  
Malgorzata Sznitowska ◽  
...  

In the treatment of pediatric diseases, suitable dosages and dosage forms are often not available for an adequate therapy. The use of innovative additive manufacturing techniques offers the possibility of producing pediatric dosage forms. In this study, the production of mini tablets using fused deposition modeling (FDM)-based 3D printing was investigated. Two pediatric drugs, caffeine and propranolol hydrochloride, were successfully processed into filaments using hyprolose and hypromellose as polymers. Subsequently, mini tablets with diameters between 1.5 and 4.0 mm were printed and characterized using optical and thermal analysis methods. By varying the number of mini tablets applied and by varying the diameter, we were able to achieve different release behaviors. This work highlights the potential value of FDM 3D printing for the on-demand production of patient individualized, small-scale batches of pediatric dosage forms.


Sign in / Sign up

Export Citation Format

Share Document