scholarly journals Konsep Smart Building Pada Kenyamanan Termal di Laboratorium Teknik

2020 ◽  
Vol 13 (1) ◽  
pp. 18-24
Author(s):  
Anastasia Febiyani

Engineering Laboratory is a place where students can learn the theory and then practicing of machines operate. Teaching room should be made as comfortabel as possible so can improve students. Room condition whereas there are practicum machines makes the room hotter.. Inadequate room capacity makes students uncomfortabel with the conditions of the practicum. The focus in this study is to examine the thermal comfort obtained by students, measurements of temperature and humidity. The method used to calculate the temperature index by calculating the Predicted Mean Vote Index (PMV), Predicted Dissatisfied (PPD), and Heat Stress Index (HSI). Result for This calculation is then used as a reference in the improvement analysis. The results obtained from the PMV calculation are 2.11 PPD 81.67%. This calculation used as a reference in the improvement analysis.

2021 ◽  
Vol 242 ◽  
pp. 110974
Author(s):  
Shayan Mirzabeigi ◽  
Behrooz Khalili Nasr ◽  
Andrea Giovanni Mainini ◽  
Juan Diego Blanco Cadena ◽  
Gabriele Lobaccaro

2017 ◽  
Vol 45 (1) ◽  
pp. 8 ◽  
Author(s):  
Patrícia Kelly de Moraes Brettas ◽  
Mara Regina Bueno de Mattos Nascimento ◽  
Ednaldo Carvalo Guimarães ◽  
Gabriella Pereira Souza

Background: Heat stress indexes integrate several variables of the thermal environment in a single figure and predict their impact on animal welfare and performance. The correct interpretation of these indexes is of help in the choice of more adequate measures to attenuate the stress caused by the heat. Therefore, the aim of this research is to examine some of the heat stress indexes mentioned in the literature and to decide which ones best reflect the potential impact of meteorological conditions on the thermal homeostasis of half-blood dairy heifers bred in Uberlândia, Triângulo Mineiro area, Minas Gerais, Brazil.Materials, Methods & Results: Eight half-blood dairy heifers were exposed to direct sunlight from 9 h to 13 h in the months of November and December of 2016, and also January and February of 2017, 5 days per month on average, in Uberlândia, MG, Brazil. After this challenge, the respiratory rate and the rectal temperature were measured. Simultaneously to the collection of physiological variables, the temperatures of dry bulb and wet bulb, as well as that of black globe, were quantified, as was the wind speed. Afterwards, the solar radiation, the relative humidity, the mean radiant temperature and some heat stress indexes were calculated, the latter being Temperature-Humidity Index, Black Globe-Humidity Index, Equivalent Temperature Index, Environmental Stress Index, Respiratory Rate Index, Thermal Load Index, Environmental Specification Index, Thermal Comfort Index for Dairy Cattle, Comprehensive Climate Index and Cattle Heat Stress Index. These indexes were, then, correlated with the physiological variables. The averages of room temperature, black globe temperature, solar radiation, wind speed, radiant temperature and relative humidity were, respectively, 29.96°C, 41.73°C, 831.02 W/m2, 0.11 m/s-1, 318.14 K and 50.51%. Rectal temperature averaged 38.8ºC while respiratory rate averaged 41.97 breaths per minute-1. Correlating the 10 heat stress indexes with these two physiological variables, it was verified that the highest values, with a confidence of 95%, were demonstrated by the Equivalent Temperature Index (0.200 and 0.317, respectively), followed by the Cattle Heat Stress Index (0.186 and 0.314, respectively).Discussion: Room temperature was within the thermoneutral zone for half-blood dairy cattle. Nevertheless, the mean radiant temperature and the black globe temperature were higher, due to intense solar radiation. Wind speed was not very expressive and relative humidity was close to what was required. The average values of rectal temperature and respiratory rate were normal, which indicated the heifers are adapted to the thermal environment. Regarding the heat stress indexes, the Equivalent Temperature Index was recommended, as it presented the highest amount of meaningful correlations with the physiological variables, followed by the Cattle Heat Stress Index and the Environmental Stress Index. The average value of the Equivalent Temperature Index remained in the “caution” category, according to the literature’s two existing scales for interpretation of said index’s results, indicating the occurrence of stress by heat, albeit not severe. In conclusion, the Equivalent Temperature Index is considered the most appropriate heat stress index for evaluating a heat stress situation in half-blood dairy heifers bred in Uberlândia, Triângulo Mineiro, followed by the Cattle Heat Stress Index and the Environmental Stress Index.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Beatriz Fátima Alves de Oliveira ◽  
Marcus J. Bottino ◽  
Paulo Nobre ◽  
Carlos A. Nobre

AbstractLand use change and deforestation can influence local temperature and climate. Here we use a coupled ocean-atmosphere model to assess the impact of savannization of the Amazon Basin on the wet-bulb globe temperature heat stress index under two climate change scenarios (RCP4.5 and RCP8.5). We find that heat stress exposure due to deforestation was comparable to the effect of climate change under RCP8.5. Our findings suggest that heat stress index could exceed the human adaptation limit by 2100 under the combined effects of Amazon savannization and climate change. Moreover, we find that risk of heat stress exposure was highest in Northern Brazil and among the most socially vulnerable. We suggest that by 2100, savannization of the Amazon will lead to more than 11 million people will be exposed heat stress that poses an extreme risk to human health under a high emission scenario.


2019 ◽  
Vol 20 (2) ◽  
pp. 125
Author(s):  
Ica Putri Angkeke ◽  
Teysar Adi Sarjana ◽  
Edjeng Suprijatna

This research aims at investigating the impact of microclimatic ammonia change on Broiler’s  performance in closed house during dry season. Seven hundred and twenty broiler’s with their initial weight of 49.29 ± 1.13 grams are kept in a 60 x 12 m2 cage.The research consists of 4 treatments and 6 experiment units. The microclimatic ammonia change is measured at a distance of 0, ¼, ½, and ¾ of closed house’s length from the inlet. The parameters observed are feed consumption, body weight gain (BWG), feed convertion ratio (FCR), performance index (PI) and Income Over Feed Cost (IOFC). The obtained data are subjected to analysis of variance and several data related to microclimatic ammonia and heat stress index (HSI) are also calculted for their correlation to find out their correlation with the broiler’s’s performance. The research results indicate that the microclimatic ammonia change significantly reduces Broiler’s performance. This is shown by the significant increase of FCR value, decrease of feed consumption, BWG, PI and IOFC (P≤0.05) starting from a distance of ¼ of cage length from the inlet. The correlation analysis result shows a negative, significant correlation between performance with ammonia, while HSI does not show any correlation with the observed parameters. The conclusion of this research is that the increase in microclimatic ammonia at increasingly further distance from the inlet decreases Broiler’s  performance in dry season.


Urban Climate ◽  
2019 ◽  
Vol 29 ◽  
pp. 100479 ◽  
Author(s):  
Farideh Golbabaei ◽  
Hamidreza Heidari ◽  
Aliakbar Shamsipour ◽  
Abbas Rahimi Forushani ◽  
Abbasali Gaeini

Urban Climate ◽  
2019 ◽  
Vol 27 ◽  
pp. 284-292 ◽  
Author(s):  
Hojatollah Kakaei ◽  
Fariborz Omidi ◽  
Roohollah Ghasemi ◽  
Maryam Ramin Sabet ◽  
Farideh Golbabaei

2011 ◽  
Vol 243-249 ◽  
pp. 6857-6861 ◽  
Author(s):  
Li Juan Wang ◽  
Jia Ping Liu ◽  
Yan Feng Liu ◽  
Ying Ying Wang ◽  
Jing Chen

Haikou is located in tropic climates in China. The outdoor environment in summer is too harsh to stay here. However, the traditional architecture, namely arcade, still survives in the severe climate. Its indoor and outdoor parameters of arcade are tested in field to research its thermal environments. The heat stress index is used to study the adaptability mechanism of arcade and local human to hot and humid environment. It proves that the metabolic rate and wind velocity are main and adjustable factors to reduce heat stress in such wretched weather. On the condition of metabolic rate below 60met and wind speed above 0.7m/s, the healthy adult can work normally in the arcade or on the corridor. So the human in tropic area should keep their metabolic rate and period staying out in the summer daytime as less as possible, and the architects should make full use of the local wind speed to organize natural ventilation.


Sign in / Sign up

Export Citation Format

Share Document