Composition of the Shales in Niutitang Formation at Huijunba Syncline and its Influence on Microscopic Pore Structure and Gas Adsorption

Author(s):  
Fu De-liang ◽  
◽  
Xu Guosheng ◽  
Tian Tao ◽  
Qin Jian-qiang ◽  
...  
Geofluids ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Run Chen ◽  
Yong Qin ◽  
Pengfei Zhang ◽  
Youyang Wang

The pore structure and gas adsorption are two key issues that affect the coal bed methane recovery process significantly. To change pore structure and gas adsorption, 5 coals with different ranks were treated by CS2 for 3 h using a Soxhlet extractor under ultrasonic oscillation conditions; the evolutions of pore structure and methane adsorption were examined using a high-pressure mercury intrusion porosimeter (MIP) with an AutoPore IV 9310 series mercury instrument. The results show that the cumulative pore volume and specific surface area (SSA) were increased after CS2 treatment, and the incremental micropore volume and SSA were increased and decreased before and after Ro,max=1.3%, respectively; the incremental big pore (greater than 10 nm in diameter) volumes were increased and SSA was decreased for all coals, and pore connectivity was improved. Methane adsorption capacity on coal before and after Ro,max=1.3% also was increased and decreased, respectively. There is a positive correlation between the changes in the micropore SSA and the Langmuir volume. It confirms that the changes in pore structure and methane adsorption capacity due to CS2 treatment are controlled by the rank, and the change in methane adsorption is impacted by the change of micropore SSA and suggests that the changes in pore structure are better for gas migration; the alteration in methane adsorption capacity is worse and better for methane recovery before and after Ro,max=1.3%. A conceptual mechanism of pore structure is proposed to explain methane adsorption capacity on CS2 treated coal around the Ro,max=1.3%.


2021 ◽  
Author(s):  
Barkat Ullah ◽  
Yuanping Cheng ◽  
Liang Wang ◽  
Weihua Yang ◽  
Izhar Mithal Jiskani ◽  
...  

Abstract Accurate and quantitative investigation of the physical structure and fractal geometry of coal has important theoretical and practical significance for coal bed methane and the prevention of dynamic disasters such as coal and gas outbursts. This study investigates the pore structure and fractural characteristics of soft and hard coals using nitrogen and carbon dioxide (N2/CO2) adsorption. Coal samples from Pingdingshan Mine in Henan province of China were collected and pulverized to the required size (0.2-0.25mm). N2/CO2 adsorption tests were performed to evaluate the pore size distribution (PSD), specific surface area (SSA), and pore volume (PV). The pore structure was characterized based on fractural theory. The results unveiled that the strength of coal has a significant influence on pore structure and fracture dimensions. The obvious N2-adsorption isotherms of the coals were verified as Type IV (A) and Type II. The shape of the hysteresis loops indicates the presence of slit-shaped pores. There are significant differences in SSA and PV between both coals. The soft coal showed larger SSA and PV than hard coal that shows consistency with adsorption capacity. The fractal dimensions of soft coal are respectively larger than that of hard coal. The greater the value of D1 (complexity of pore surface) of soft coal is, the larger the pore surface roughness and gas adsorption capacity is. The results enable us to conclude that the characterization of pores and fractures of soft and hard coals is different, tending to different adsorption/desorption characteristics and outburst sensitivity. In this regard, results provide a reference for formulating corresponding coal and gas outburst prevention and control measures.


2017 ◽  
Vol 54 (10) ◽  
pp. 1033-1048 ◽  
Author(s):  
Yuguang Hou ◽  
Sheng He ◽  
Nicholas B. Harris ◽  
Jizheng Yi ◽  
Yi Wang ◽  
...  

The Ordovician Wufeng Formation and Silurian Longmaxi Formation are two of the most organic-rich and gas-prospective shale formations in the central Yangtze area, China. In this study, we investigate the controls exerted by shale composition and pore structure on methane sorption of these highly matured marine shales (Ro ranges from 2.0% to 4.0%). Samples were analyzed by SEM pore imaging of Ar-ion milled samples, high pressure methane adsorption, and low temperature nitrogen adsorption. In the high TOC Wufeng and lower Longmaxi formations, numerous organic matter pores are present. A positive correlation exists between TOC, BET surface area, and CH4 sorption capacity, indicating that porosity associated with organic matter is the key factor controlling methane sorption capacity of shale samples. In the organic-lean upper Longmaxi Formation, pores within clay particles and carbonate minerals are the major pore types. Organic-lean shale samples from the upper Longmaxi Formation have higher clay content, lower BET surface area, and lower adsorption capacity than organic-rich shales. Within several low TOC samples, a relatively strong correlation exists between illite content and methane sorption capacity, which is interpreted to result from clay mineral-hosted porosity.


2019 ◽  
Vol 7 (2) ◽  
pp. T547-T563 ◽  
Author(s):  
Jiyuan Wang ◽  
Shaobin Guo

To systematically study the whole-aperture pore-structure characteristics of the marine-continental transitional shale facies in the Upper Palaeozoic Taiyuan and Shanxi Formations of the Qinshui Basin, we have collected a total of 11 samples for high-pressure mercury intrusion, low-pressure gas adsorption ([Formula: see text] and [Formula: see text]), nuclear magnetic resonance (NMR), and field-emission scanning electron microscopy with argon-ion polishing experiments to determine the pore morphology and distribution characteristics of shale samples in detail and to perform quantitative analyses. Then compared the pore-development characteristics of the Taiyuan Formation samples with those of the Shanxi Formation to determine which is preferable. The experimental results indicate that the shale samples of the Qinshui Basin mainly develop three types of pores: organic pores, intergranular pores, and microfractures. High-pressure mercury intrusion and gas-adsorption experiments indicate that the pore-size distributions exhibit multiple peaks. The samples contained varying proportions of macropores, mesopores, and micropores, among which the former two are dominant, accounting for approximately 85% of the total pore volume, whereas micropores account for only 15%. However, mesopores and micropores dominate the specific surface area; between them, the micropores are much more prevalent, accounting for more than 99% of the total specific surface area. Macropores contribute less than 1% of the specific surface area and therefore can be neglected. The pore morphology resembles the slit type parallel platy pores with a ballpoint pen structure. The NMR [Formula: see text] spectra have multiple-peak values. In addition, the large difference between the curved areas before and after centrifugation indicates that the samples contain a large proportion of mesopores and macropores, which is consistent with the results presented above. The results demonstrate that the development of pores in the Taiyuan Formation is better than that in the Shanxi Formation.


2020 ◽  
pp. 1-25
Author(s):  
Fuqiang Lai ◽  
Haiyan Mao ◽  
Jianping Bai ◽  
Daijan Gong ◽  
Guotong Zhang ◽  
...  

The storage and seepage space of shale is mainly composed of pores and fractures, while the microscopic pore structure and fracture distribution are very complicated. The accuracy of calculation of pore structure parameters is related to whether the reservoir evaluation is correct and effective. Taking the Niutitang Formation in the Cengong area of Guizhou as the research object. Firstly, based on the Archie formula, the process of the wellbore mud intrusion is approximated as the process of the laboratory high pressure mercury intrusion, combined with conventional and nuclear magnetic resonance logging data. The formula deduces a new model for the T2 spectrum conversion pseudo-capillary pressure curve. Then the model is calibrated by the high pressure mercury intrusion experimental data, and the pore structure parameters such as reservoir pore size distribution curve and maximum pore throat radius are calculated. The results show that the maximum pore throat radius and total porosity data calculated by NMR logging are relatively reliable, the median radius error is general, and the displacement pressure and median pressure error are relatively large. The pore volume percentage of 1-10 μm is up to 60%, and the micro-cracks are relatively developed, which is beneficial to the fracturing of the reservoir. Therefore, the use of NMR logging data combined with conventional logging can better reflect the pore structure characteristics of reservoirs, which provides a strong support for complex reservoir identification and qualitative prediction of productivity, and has a good application prospect.


Sign in / Sign up

Export Citation Format

Share Document