SATURATION EXPONENT AS A FUNCTION OF RESERVOIR HETEROGENEITY AND WETTABILITY IN THE TAMBAREDJO OIL FIELD, SURINAME

2021 ◽  
Author(s):  
Elias R. Acosta ◽  
◽  
Bhagwanpersad Nandlal ◽  
Ryan Harripersad ◽  
◽  
...  

This research proposed an alternative method for determining the saturation exponent (n) by finding the best correlations for the heterogeneity index using available core data and considering wettability changes. The log curves of the variable n were estimated, and the effect on the water saturation (Sw) calculations and the Stock Tank Oil Initially In Place (STOIIP) in the Tambaredjo (TAM) oil field was analyzed. Core data were employed to obtain the relationship between n and heterogeneity using cross-plots against several heterogeneity indices, reservoir properties, and pore throat size. After filtering the data, the clay volume (Vcl), shale volume, silt volume, basic petrophysical property index (BPPI), net reservoir index, pore grain volume ratio, and rock texture were defined as the best matches. Their modified/improved equations were applied to the log data and evaluated. The n related to Vcl was the best selection based on the criteria of depth variations and logical responses to the lithology. The Sw model in this field showed certain log readings (high resistivity [Rt] reading ≥ 500 ohm.m) that infer these intervals to be probable inverse-wet (oil-wet). The cross-plots (Rt vs. Vcl; Rt vs. density [RHOB]; Rt vs. total porosity [PHIT]) were used to discard the lithologies related to a high Rt (e.g., lignites and calcareous rocks) and to correct Sw when these resulted in values below the estimated irreducible water saturation (Swir). The Sw calculations using the Indonesian equation were updated to incorporate n as a variable (log curves), comparing it with Sw from the core data and previous calculations using a fixed average value (n = 1.82) from the core data. An integrated approach was used to determine n, which is related to the reservoir’s heterogeneity and wettability changes. The values of n for high Rt (n > 2) intervals ranged from 2.3 to 8.5, which is not close to the field average n value (1.82). Specific correlations were found by discriminating Swir (Swir < 15%), (Swir 15%–19%), and Swir (> 19%). The results showed that using n as a variable parameter improved Sw from 39.5% to 36.5% average in the T1 and T2 sands, showing a better fit than the core data average and increasing the STOIIP estimations by 6.81%. This represents now a primary oil recovery of 12.1%, closer to the expected value for these reservoirs. Although many studies have been done on n determination and its effect on Sw calculations, using average values over a whole field is still a common practice regardless of heterogeneity and wettability considerations. This study proposed a method to include the formation of heterogeneity and wettability changes in n determination, allowing a more reliable Sw determination as demonstrated in the TAM oil field in Suriname.

Author(s):  
Hesham A. Abu Zaid ◽  
◽  
Sherif A. Akl ◽  
Mahmoud Abu El Ela ◽  
Ahmed El-Banbi ◽  
...  

The mechanical waves have been used as an unconventional enhanced oil recovery technique. It has been tested in many laboratory experiments as well as several field trials. This paper presents a robust forecasting model that can be used as an effective tool to predict the reservoir performance while applying seismic EOR technique. This model is developed by extending the wave induced fluid flow theory to account for the change in the reservoir characteristics as a result of wave application. A MATLAB program was developed based on the modified theory. The wave’s intensity, pressure, and energy dissipation spatial distributions are calculated. The portion of energy converted into thermal energy in the reservoir is assessed. The changes in reservoir properties due to temperature and pressure changes are considered. The incremental oil recovery and reduction in water production as a result of wave application are then calculated. The developed model was validated against actual performance of Liaohe oil field. The model results show that the wave application increases oil production from 33 to 47 ton/day and decreases water-oil ratio from 68 to 48%, which is close to the field measurements. A parametric analysis is performed to identify the important parameters that affect reservoir performance under seismic EOR. In addition, the study determines the optimum ranges of reservoir properties where this technique is most beneficial.


2020 ◽  
Vol 21 (3) ◽  
pp. 9-18
Author(s):  
Ahmed Abdulwahhab Suhail ◽  
Mohammed H. Hafiz ◽  
Fadhil S. Kadhim

   Petrophysical characterization is the most important stage in reservoir management. The main purpose of this study is to evaluate reservoir properties and lithological identification of Nahr Umar Formation in Nasiriya oil field. The available well logs are (sonic, density, neutron, gamma-ray, SP, and resistivity logs). The petrophysical parameters such as the volume of clay, porosity, permeability, water saturation, were computed and interpreted using IP4.4 software. The lithology prediction of Nahr Umar formation was carried out by sonic -density cross plot technique. Nahr Umar Formation was divided into five units based on well logs interpretation and petrophysical Analysis: Nu-1 to Nu-5. The formation lithology is mainly composed of sandstone interlaminated with shale according to the interpretation of density, sonic, and gamma-ray logs. Interpretation of formation lithology and petrophysical parameters shows that Nu-1 is characterized by low shale content with high porosity and low water saturation whereas Nu-2 and Nu-4 consist mainly of high laminated shale with low porosity and permeability. Nu-3 is high porosity and water saturation and Nu-5 consists mainly of limestone layer that represents the water zone.


2021 ◽  
Author(s):  
Marisely Urdaneta

Abstract This paper aims to address calibration of a coreflood Alkali Surfactant Polymer (ASP) formulation experiment through parametrization of fluid-fluid and rock-fluid interactions considering cation exchange capacity and by rock to guide an ASP pilot design. First of all, a series of chemical formulation experiments were studied in cores drilled from clastic reservoir so that displacement lab tests were run on linear and radial cores to determine the potential for oil recovery by ASP flooding and recommended the chemical formulation and flooding schemes, in terms of oil recovery. Therefore, to simulate the process, those tests performed with radial core injection were taken, because this type of test has a better representation of the fluid flow in reservoir, the fluids are injected by a perforation in the center of the core, moving in a radial direction the fluids inside the porous medium. Subsequently, displaced fluids are collected on the periphery of the core carrier and stored in graduated test tubes. The recommended test was carried out to the phase of numerical simulation and historical matching. Reservoir simulation is one of the most important tools available to predict behavior under chemical flooding conditions and to study sensitivities based on cost-effective process implementation. Then, a radial core simulation model was designed from formulation data with porosity of 42.6%, a pore volume (PV) of 344.45 ml, radius of 7.17 cm and weight of 1225.84 g. The initial oil saturation was 0.748 PV (257.58 ml), with a critical water saturation of 0.252 PV (86.78 ml). For the simulation model historical matching, adjustments were made until an acceptable comparison was obtained with laboratory test production data through parameterization of relative permeability curves, chemical adsorption parameters, polymer viscosity, among others; resulting in an accumulated effluents production mass 37% greater for alkali than obtained in the historical, regarding to surfactant the deviation was 8% considered acceptable and for the polymer the adjustment was very close. For the injector well bottom pressure, the viscosity ratio of the mixture was considered based on the polymer concentration and the effect of the shear rate on the viscosity of the polymer as well as the effect of salinity in the alkali case. Finally, a calibrated coreflood numerical simulation model was obtained for ASP flooding to design an ASP Pilot with a residual oil saturation of 0.09 PV (31 ml) meaning 64% more recovered oil compared to a waterflooding case.


Molecules ◽  
2020 ◽  
Vol 25 (15) ◽  
pp. 3385 ◽  
Author(s):  
Abdulrauf R. Adebayo ◽  
Abubakar Isah ◽  
Mohamed Mahmoud ◽  
Dhafer Al-Shehri

Laboratory measurements of capillary pressure (Pc) and the electrical resistivity index (RI) of reservoir rocks are used to calibrate well logging tools and to determine reservoir fluid distribution. Significant studies on the methods and factors affecting these measurements in rocks containing oil, gas, and water are adequately reported in the literature. However, with the advent of chemical enhanced oil recovery (EOR) methods, surfactants are mixed with injection fluids to generate foam to enhance the gas injection process. Foam is a complex and non-Newtonian fluid whose behavior in porous media is different from conventional reservoir fluids. As a result, the effect of foam on Pc and the reliability of using known rock models such as the Archie equation to fit experimental resistivity data in rocks containing foam are yet to be ascertained. In this study, we investigated the effect of foam on the behavior of both Pc and RI curves in sandstone and carbonate rocks using both porous plate and two-pole resistivity methods at ambient temperature. Our results consistently showed that for a given water saturation (Sw), the RI of a rock increases in the presence of foam than without foam. We found that, below a critical Sw, the resistivity of a rock containing foam continues to rise rapidly. We argue, based on knowledge of foam behavior in porous media, that this critical Sw represents the regime where the foam texture begins to become finer, and it is dependent on the properties of the rock and the foam. Nonetheless, the Archie model fits the experimental data of the rocks but with resulting saturation exponents that are higher than conventional gas–water rock systems. The degree of variation in the saturation exponents between the two fluid systems also depends on the rock and fluid properties. A theory is presented to explain this phenomenon. We also found that foam affects the saturation exponent in a similar way as oil-wet rocks in the sense that they decrease the cross-sectional area of water available in the pores for current flow. Foam appears to have competing and opposite effects caused by the presence of clay, micropores, and conducting minerals, which tend to lower the saturation exponent at low Sw. Finally, the Pc curve is consistently lower in foam than without foam for the same Sw.


2017 ◽  
Vol 5 (2) ◽  
pp. 57 ◽  
Author(s):  
Godwin Aigbadon ◽  
A.U Okoro ◽  
Chuku Una ◽  
Ocheli Azuka

The 3-D depositional environment was built using seismic data. The depositional facies was used to locate channels with highly theif zones and distribution of various sedimentary facies. The integration core data and the gamma ray log trend from the wells within the studied interval with right boxcar/right bow-shape indicate muddy tidal flat to mixed tidal flat environments. The bell–shaped from the well logs with the core data indicate delta front with mouth bar, the blocky box- car trend from the well logs with the core data indicate tidal point bar with tidal channel fill. The integration of seismic to well log tie display a good tie in the wells across the field. The attribute map from velocity analysis revealed the presence of hydrocarbons in the identified sands (A, B, C, D1, D2, D4, D5). The major faults F1, F2, F3 and F4 with good sealing capacity are responsible for hydrocarbon accumulation in the field. Detailed petro physical analysis of well log data showed that the studied interval are characterized by sand-shale inter-beds. Eight reservoirs were mapped at depth intervals of 2886m to 3533m with their thicknesses ranging from 12m to 407m. Also the Analysis of the petrophysical results showed that porosity of the reservoirs range from 14% to 28 %; permeability range from 245.70 md to 454.7md; water saturation values from 21.65% to 54.50% and hydrocarbon saturation values from 45.50% to 78.50 %. The by-passed hydrocarbons were identified and estimated in low resistivity pay sands D1, D2 at depth of 2884m – 2940m, sand D5 at depth of 3114m – 3126m respectively. The model serve as a basis for establishing facies model in the field.


Author(s):  
Mahmoud Leila ◽  
Ali Eslam ◽  
Asmaa Abu El-Magd ◽  
Lobna Alwaan ◽  
Ahmed Elgendy

Abstract The Messinian Abu Madi Formation represents the most prospective reservoir target in the Nile Delta. Hydrocarbon exploration endeavors in Nile Delta over the last few decades highlighted some uncertainties related to the predictability and distribution of the Abu Madi best reservoir quality facies. Therefore, this study aims at delineating the factors controlling the petrophysical heterogeneity of the Abu Madi reservoir facies in Faraskour Field, northeastern onshore part of the Nile Delta. This work provides the very first investigation on the reservoir properties of Abu Madi succession outside the main canyon system. In the study area, Abu Madi reservoir is subdivided into two sandstone units (lower fluvial and upper estuarine). Compositionally, quartzose sandstones (quartz > 65%) are more common in the fluvial unit, whereas the estuarine sandstones are often argillaceous (clays > 15%) and glauconitic (glauconite > 10%). The sandstones were classified into four reservoir rock types (RRTI, RRTII, RRTIII, and RRTIV) having different petrophysical characteristics and fluid flow properties. RRTI hosts the quartzose sandstones characterized by mega pore spaces (R35 > 45 µm) and a very well-connected, isotropic pore system. On the other side, RRTIV constitutes the lowest reservoir quality argillaceous sandstones containing meso- and micro-sized pores (R35 > 5 µm) and a pore system dominated by dead ends. Irreducible water saturation increases steadily from RRTI (Swir ~ 5%) to RRTIV (Swir > 20%). Additionally, the gas–water two-phase co-flowing characteristics decrease significantly from RRTI to RRTIV facies. The gaseous hydrocarbons will be able to flow in RRTI facies even at water saturation values exceeding 90%. On the other side, the gas will not be able to displace water in RRTIV sandstones even at water saturation values as low as 40%. Similarly, the influence of confining pressure on porosity and permeability destruction significantly increases from RRTI to RRTIV. Accordingly, RRTI facies are the best reservoir targets and have high potentiality for primary porosity preservation.


2020 ◽  
Vol 10 (8) ◽  
pp. 3925-3935
Author(s):  
Samin Raziperchikolaee ◽  
Srikanta Mishra

Abstract Evaluating reservoir performance could be challenging, especially when available data are only limited to pressures and rates from oil field production and/or injection wells. Numerical simulation is a typical approach to estimate reservoir properties using the history match process by reconciling field observations and model predictions. Performing numerical simulations can be computationally expensive by considering a large number of grids required to capture the spatial variation in geological properties, detailed structural complexity of the reservoir, and numerical time steps to cover different periods of oil recovery. In this work, a simplified physics-based model is used to estimate specific reservoir parameters during CO2 storage into a depleted oil reservoir. The governing equation is based on the integrated capacitance resistance model algorithm. A multivariate linear regression method is used for estimating reservoir parameters (injectivity index and compressibility). Synthetic scenarios were generated using a multiphase flow numerical simulator. Then, the results of the simplified physics-based model in terms of the estimated fluid compressibility were compared against the simulation results. CO2 injection data including bottom hole pressure and injection rate were also gathered from a depleted oil reef in Michigan Basin. A field application of the simplified physics-based model was presented to estimate above-mentioned parameters for the case of CO2 storage in a depleted oil reservoir in Michigan Basin. The results of this work show that this simple lumped parameter model can be used for a quick estimation of the specific reservoir parameters and its changes over the CO2 injection period.


2017 ◽  
Vol 5 (1) ◽  
pp. 37 ◽  
Author(s):  
Inyang Namdie ◽  
Idara Akpabio ◽  
Agbasi Okechukwu .E.

Bonga oil field is located 120km (75mi) southeast of the Niger Delta, Nigeria. It is a subsea type development located about 3500ft water depth and has produced over 330 mmstb of hydrocarbon till date with over 16 oil producing and water injection wells. The producing formation is the Middle to Late Miocene unconsolidated turbidite sandstones with lateral and vertical homogeneities in reservoir properties. This work, analysis the petrophysical properties of the reservoir units for the purpose of modeling the effect of shale content on permeability in the reservoir. Turbidite sandstones are identified by gamma-ray log signatures as intervals with 26-50 API, while sonic, neutron, resistivity, caliper and other log data are applied to estimate volume of shale ranging between 0.972 v/v for shale intervals and 0.0549 v/v for turbidite sands, water saturation of 0.34 v/v average in most sand intervals, porosity range from 0.010 for shale intervals to 0.49 v/v for clean sands and permeability values for the send interval 11.46 to2634mD, for intervals between 7100 to 9100 ft., Data were analyzed using the Interactive Petrophysical software that splits the whole curve into sand and shale zones and estimates among other petrophysical parameters the shale contents of the prospective zones. While Seismic data revealed reservoir thickness ranging from 25ft to over 140ft well log data within the five wells have identified sands of similar thickness and estimated average permeability of700mD. Within the sand units across the five wells, cross plots of estimated porosity, volume of shale and permeability values reveal strong dependence of permeability on shale volume and a general decrease in permeability in intervals with shale volume. It is concluded that sand units with high shale contents that are from0.500 to0.900v/v will not provide good quality reservoir in the field.


Sign in / Sign up

Export Citation Format

Share Document