scholarly journals PENGARUH PEMBERIAN CELLULOSE ACETATE DARI LAMUN LAUT (Enhalus acoroides) SEBAGAI SURFACE COATING PLAT RESIN AKRILIK TERHADAP JUMLAH KOLONI Candida albicans

DENTA ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 17
Author(s):  
Puguh Bayu Prabowo ◽  
Enjel Arjuna Susru Wardana ◽  
Syamsulina Revianti
2018 ◽  
Vol 156 ◽  
pp. 08016 ◽  
Author(s):  
Siti Nurkhamidah ◽  
Yeni Rahmawati ◽  
Ignatius Gunardi ◽  
Pitsyah Alifiyanti ◽  
Krisna Dimas Priambodo ◽  
...  

In this study, cellulose acetate/polyethylene glycol (CA/PEG) membrane with composition 80/20 was prepared by phase inversion method. Titanium dioxide with different number has been added by using surface coating. Hydrophilicity, morphology, flux permeate and salt rejection of membranes has been studied. The hydrophilicity is determined by Fourier-Transformed Infra-Red (FTIR) spectra and contact angle analysis. Surface and fractured morphology are identified by using Scanning Electron Microscopy (SEM). The experiment results show that hydrophilicity of CA/PEG membrane increases with the addition and the increasing of TiO2 contents. However, with further increasing of TiO2, hydrophilicity of CPT membrane decreases. The optimum membrane is CA/PEG/TiO2 80/20/1,25 g/L solvent (CPT 3) with flux permeate of 111,82 L.m-2h-1 and salt rejection of 48,30%.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Emil Paluch ◽  
Jakub Szperlik ◽  
Łukasz Lamch ◽  
Kazimiera A. Wilk ◽  
Ewa Obłąk

AbstractOur research aims to expand the knowledge on relationships between the structure of cationic dicephalic surfactants—N,N-bis[3,3_-(dimethylamine)propyl]alkylamide dihydrochlorides and N,N-bis[3,3_-(trimethylammonio)propyl]alkylamide dibromides (alkyl: n-C9H19, n-C11H23, n-C13H27, n-C15H31)—and their antifungal mechanism of action on Candida albicans. The mentioned groups of amphiphilic substances are characterized by the presence of a weak, hydrochloride cationic center readily undergoing deprotonation, as well as a stable, strong quaternary ammonium group and alkyl chains capable of strong interactions with fungal cells. Strong fungicidal properties and the role in creation and eradication of biofilm of those compounds were discussed in our earlier works, yet their mechanism of action remained unclear. It was shown that investigated surfactants induce strong oxidative stress and cause increase in cell membrane permeability without compromising its continuity, as indicated by increased potassium ion (K+) leakage. Thus experiments carried out on the investigated opportunistic pathogen indicate that the mechanism of action of the researched surfactants is different than in the case of the majority of known surfactants. Results presented in this paper significantly broaden the understanding on multifunctional cationic surfactants and their mechanism of action, as well as suggest their possible future applications as surface coating antiadhesives, fungicides and antibiofilm agents in medicine or industry.


2006 ◽  
Vol 72 (6) ◽  
pp. 4436-4439 ◽  
Author(s):  
Val�rie Decraene ◽  
Jonathan Pratten ◽  
Michael Wilson

ABSTRACT Simple methods of reducing the microbial load on surfaces in hospitals are needed to reduce the risk of hospital-associated infections. Here we report on the ability of a cellulose acetate coating containing the photosensitizers toluidine blue and rose bengal to kill microbes (Staphylococcus aureus, Escherichia coli, Clostridium difficile, a bacteriophage, and Candida albicans) on its surface when illuminated with white light.


Author(s):  
H. K. Plummer ◽  
E. Eichen ◽  
C. D. Melvin

Much of the work reported in the literature on cellulose acetate reverse osmosis membranes has raised new and important questions with regard to the dense or “active” layer of these membranes. Several thickness values and structures have been attributed to the dense layer. To ensure the correct interpretation of the cellulose acetate structure thirteen different preparative techniques have been used in this investigation. These thirteen methods included various combinations of water substitution, freeze drying, freeze sectioning, fracturing, embedding, and microtomy techniques with both transmission and scanning electron microscope observations.It was observed that several factors can cause a distortion of the structure during sample preparation. The most obvious problem of water removal can cause swelling, shrinking, and folds. Improper removal of embedding materials, when used, can cause a loss of electron image contrast and, or structure which could hinder interpretation.


1996 ◽  
Vol 26 (4) ◽  
pp. 452-460 ◽  
Author(s):  
J. SAVOLAINEN ◽  
A. RANTALA ◽  
M. NERMES ◽  
L. LEHTONEN ◽  
M. VIANDER

1997 ◽  
Vol 24 (10) ◽  
pp. 788-790 ◽  
Author(s):  
Y. KULAK ◽  
A. ARIKAN ◽  
E. KAZAZOGLU

Sign in / Sign up

Export Citation Format

Share Document