quaternary ammonium group
Recently Published Documents


TOTAL DOCUMENTS

67
(FIVE YEARS 15)

H-INDEX

15
(FIVE YEARS 3)

Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6964
Author(s):  
Monika Kijewska ◽  
Dorota Gąszczyk ◽  
Remigiusz Bąchor ◽  
Piotr Stefanowicz ◽  
Zbigniew Szewczuk

Peptide modification by a quaternary ammonium group containing a permanent positive charge is a promising method of increasing the ionization efficiency of the analyzed compounds, making ultra-sensitive detection even at the attomolar level possible. Charge-derivatized peptides may undergo both charge remote (ChR) and charge-directed (ChD) fragmentation. A series of model peptide conjugates derivatized with N,N,N-triethyloammonium (TEA), 1-azoniabicyclo[2.2.2]octane (ABCO), 2,4,6-triphenylopyridinium (TPP) and tris(2,4,6-trimetoxyphenylo)phosphonium (TMPP) groups were analyzed by their fragmentation pathways both in collision-induced dissociation (CID) and electron-capture dissociation (ECD) mode. The effect of the fixed-charge tag type and peptide sequence on the fragmentation pathways was investigated. We found that the aspartic acid effect plays a crucial role in the CID fragmentation of TPP and TEA peptide conjugates whereas it was not resolved for the peptides derivatized with the phosphonium group. ECD spectra are mostly dominated by cn ions. ECD fragmentation of TMPP-modified peptides results in the formation of intense fragments derived from this fixed-charge tag, which may serve as reporter ion.


2021 ◽  
Vol 22 (17) ◽  
pp. 9321
Author(s):  
Stefania Racovita ◽  
Marin-Aurel Trofin ◽  
Diana Felicia Loghin ◽  
Marius-Mihai Zaharia ◽  
Florin Bucatariu ◽  
...  

Polybetaines, that have moieties bearing both cationic (quaternary ammonium group) and anionic groups (carboxylate, sulfonate, phosphate/phosphinate/phosphonate groups) situated in the same structural unit represent an important class of smart polymers with unique and specific properties, belonging to the family of zwitterionic materials. According to the anionic groups, polybetaines can be divided into three major classes: poly(carboxybetaines), poly(sulfobetaines) and poly(phosphobetaines). The structural diversity of polybetaines and their special properties such as, antifouling, antimicrobial, strong hydration properties and good biocompatibility lead to their use in nanotechnology, biological and medical fields, water remediation, hydrometallurgy and the oil industry. In this review we aimed to highlight the recent developments achieved in the field of biomedical applications of polybetaines such as: antifouling, antimicrobial and implant coatings, wound healing and drug delivery systems.


Life ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 403
Author(s):  
Paul L. Wood ◽  
Kathleen A. Hauther ◽  
Jon H. Scarborough ◽  
Dustin J. Craney ◽  
Beatrix Dudzik ◽  
...  

Ceramides have been implicated in a number of disease processes. However, current means of evaluation with flow infusion analysis (FIA) have been limited primarily due to poor sensitivity within our high-resolution mass spectrometry lipidomics analytical platform. To circumvent this deficiency, we investigated the potential of chloride adducts as an alternative method to improve sensitivity with electrospray ionization. Chloride adducts of ceramides and ceramide subfamilies provided 2- to 50-fold increases in sensitivity both with analytical standards and biological samples. Chloride adducts of a number of other lipids with reactive hydroxy groups were also enhanced. For example, monogalactosyl diacylglycerols (MGDGs), extracted from frontal lobe cortical gray and subcortical white matter of cognitively intact subjects, were not detected as ammonium adducts but were readily detected as chloride adducts. Hydroxy lipids demonstrate a high level of specificity in that phosphoglycerols and phosphoinositols do not form chloride adducts. In the case of choline glycerophospholipids, the fatty acid substituents of these lipids could be monitored by MS2 of the chloride adducts. Monitoring the chloride adducts of a number of key lipids offers enhanced sensitivity and specificity with FIA. In the case of glycerophosphocholines, the chloride adducts also allow determination of fatty acid substituents. The chloride adducts of lipids possessing electrophilic hydrogens of hydroxyl groups provide significant increases in sensitivity. In the case of glycerophosphocholines, chloride attachment to the quaternary ammonium group generates a dominant anion, which provides the identities of the fatty acid substituents under MS2 conditions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Emil Paluch ◽  
Jakub Szperlik ◽  
Łukasz Lamch ◽  
Kazimiera A. Wilk ◽  
Ewa Obłąk

AbstractOur research aims to expand the knowledge on relationships between the structure of cationic dicephalic surfactants—N,N-bis[3,3_-(dimethylamine)propyl]alkylamide dihydrochlorides and N,N-bis[3,3_-(trimethylammonio)propyl]alkylamide dibromides (alkyl: n-C9H19, n-C11H23, n-C13H27, n-C15H31)—and their antifungal mechanism of action on Candida albicans. The mentioned groups of amphiphilic substances are characterized by the presence of a weak, hydrochloride cationic center readily undergoing deprotonation, as well as a stable, strong quaternary ammonium group and alkyl chains capable of strong interactions with fungal cells. Strong fungicidal properties and the role in creation and eradication of biofilm of those compounds were discussed in our earlier works, yet their mechanism of action remained unclear. It was shown that investigated surfactants induce strong oxidative stress and cause increase in cell membrane permeability without compromising its continuity, as indicated by increased potassium ion (K+) leakage. Thus experiments carried out on the investigated opportunistic pathogen indicate that the mechanism of action of the researched surfactants is different than in the case of the majority of known surfactants. Results presented in this paper significantly broaden the understanding on multifunctional cationic surfactants and their mechanism of action, as well as suggest their possible future applications as surface coating antiadhesives, fungicides and antibiofilm agents in medicine or industry.


2020 ◽  
pp. jbc.RA120.016019
Author(s):  
Mussa Quareshy ◽  
Muralidharan Shanmugam ◽  
Eleanor Townsend ◽  
Eleanor Jameson ◽  
Timothy D.H. Bugg ◽  
...  

Microbial metabolism of carnitine to trimethylamine (TMA) in the gut can accelerate atherosclerosis and heart disease and these TMA-producing enzymes are therefore important drug targets. Here, we report the first structures of the carnitine oxygenase CntA, an enzyme of the Rieske oxygenase family. CntA exists in a head-to-tail a3 trimeric structure. The two functional domains (the Rieske and the catalytic mononuclear iron domains) are located > 40 Å apart in the same monomer but adjacent in two neighbouring monomers. Structural determination of CntA and subsequent electron paramagnetic resonance measurements uncover the molecular basis of the so-called bridging glutamate (E205) residue in inter-subunit electron transfer. The structures of the substrate-bound CntA help to define the substrate pocket. Importantly, a tyrosine residue (Y203) is essential for ligand recognition through a π-cation interaction with the quaternary ammonium group. This interaction between an aromatic residue and quaternary amine substrates allows us to delineate a subgroup of Rieske oxygenases (group V) from the prototype ring-hydroxylating Rieske oxygenases involved in bioremediation of aromatic pollutants in the environment. Furthermore, we report the discovery of the first known CntA inhibitors and solve the structure of CntA in complex with the inhibitor, demonstrating the pivotal role of Y203 through a π-π stacking interaction with the inhibitor. Our study provides the structural and molecular basis for future discovery of drugs targeting this TMA-producing enzyme in human gut.


Marine Drugs ◽  
2020 ◽  
Vol 18 (3) ◽  
pp. 163 ◽  
Author(s):  
Jingjing Zhang ◽  
Wenqiang Tan ◽  
Qing Li ◽  
Fang Dong ◽  
Zhanyong Guo

Chitosan is an active biopolymer, and the combination of it with other active groups can be a valuable method to improve the potential application of the resultant derivatives in food, cosmetics, packaging materials, and other industries. In this paper, a series of N,N,N-trimethyl-O-(ureidopyridinium)acetyl chitosan derivatives were synthesized. The combination of chitosan with ureidopyridinium group and quaternary ammonium group made it achieve developed water solubility and biological properties. The structures of chitosan and chitosan derivatives were confirmed by FTIR, 1H NMR spectra, and elemental analysis. The prepared chitosan derivatives were evaluated for antioxidant property by 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging ability, hydroxyl radical scavenging ability, and superoxide radical scavenging ability. The results revealed that the synthesized chitosan derivatives exhibited improved antioxidant activity compared with chitosan. The chitosan derivatives were also investigated for antifungal activity against Phomopsis asparagus as well as Botrytis cinerea, and they showed a significant inhibitory effect on the selected phytopathogen. Meanwhile, CCK-8 assay was used to test the cytotoxicity of chitosan derivatives, and the results showed that most derivatives had low toxicity. These data suggested to develop analogs of chitosan derivatives containing ureidopyridinium group and quaternary ammonium group, which will provide a new kind of promising biomaterials having decreased cytotoxicity as well as excellent antioxidant and antimicrobial activity.


Polymers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 283 ◽  
Author(s):  
Alessandra Carbone ◽  
Rolando Pedicini ◽  
Irene Gatto ◽  
Ada Saccà ◽  
Assunta Patti ◽  
...  

A series of quaternary ammonium-functionalized polysulfones were successfully synthesized using a chloromethylation two-step method. In particular, triethylammonium and trimethylammonium polysulfone derivatives with different functionalization degrees from 60% to 150% were investigated. NMR spectroscopic techniques were used to determine the degree of functionalization of the polymers. The possibility to predict the functionalization degree by a reaction tool based on a linear regression was highlighted. Anionic membranes with a good homogeneity of thickness were prepared using a doctor-blade casting method of functionalized polymers. The chemical–physical data showed that ion exchange capacity, water content, and wettability increase with the increase of functionalization degree. A higher wettability was found for membranes prepared by the trimethylamine (TMA) quaternary ammonium group. A degree of functionalization of 100% was chosen for an electrochemical test as the best compromise between chemical–physical properties and mechanical stability. From anionic conductivity measurement a better stability was found for the triethylamine (TEA)-based membrane due to a lower swelling effect. A power density of about 300 mW/cm2 for the TEA-based sample at 60 °C in a H2/O2 fuel cell was found.


2019 ◽  
Vol 17 (1) ◽  
pp. 1244-1251 ◽  
Author(s):  
Desislava Staneva ◽  
Stanislava Yordanova ◽  
Evgenia Vasileva-Tonkova ◽  
Stanimir Stoyanov ◽  
Ivo Grabchev

AbstractThe functional characteristics of a new eosin dye with biocidal quaternary ammonium group (E) were studied in aqueous solution and in organic solvents of different polarity. The spectral properties depend on the nature and polarity of the respective solvents. The antimicrobial activity of compound E has been tested in vitro against Gram-negative bacteria (Escherichia coli, Acinetobacter johnsoni and Pseudomonas aeruginosa), Gram-positive bacteria (Sarcina lutea and Bacillus cereus) and the antifungal activity was tested against the yeasts Candida lipolytica in solution and after treated on cotton fabric. Broth dilution test has been used for quantitative evaluation of the antimicrobial activity of compound E against the model strains. The ability of compound E to inhibit the growth of model Gram-negative P. aeruginosa strain was assessed after 16 h of incubation in presence and absence of light. These experiments were conducted in planktonic format in solution and on cotton fabric. The results suggest that the new compound is effective in treating the relevant pathogens with better results being obtained by irradiation with light. In this case the quaternary ammonium group promotes the binding of eosin Y moiety to the bacterial cell wall thus accelerating bacterial photo inactivation.


Sign in / Sign up

Export Citation Format

Share Document