scholarly journals Energy absorption characteristics of thin-walled sinusoidal corrugated tube using RSM-CCD

2020 ◽  
Vol 26 (4) ◽  
pp. 144-153
Author(s):  
Mohd. Reyaz Ur Rahim ◽  
Prem Kumar Bharti

AbstractThe axial crushing behaviour of tubes of different section shapes has been extensively investigated as they have an excellent energy absorption, but the thin walled corrugated tube structures have been designed to further improve their energy absorption performance. The study aims to analyze the effect of sinusoidal corrugations along cross section of the tube on peak force, energy absorption and specific energy absorption. In the present work the response surface methodology (RSM) using central composite design (CCD) has been used and simulation work is performed by using ANSYS workbench to explore the effects of geometrical parameters on the responses of constructing models.

BioResources ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. 5985-6002
Author(s):  
Peng Cheng ◽  
Qingchun Wang ◽  
Shi Ke

The specific energy absorption of a thin-walled tube can be improved by filler. This study examined the potential use of a cheaper biomass filler, paper scraps, to enhance the energy absorption characteristics of the structure while reducing its cost, compared to that with a traditional filler such as foam material. Quasi-static crushing tests and finite element simulations were performed by using the explicit non-linear finite element software LS-DYNA to determine the improvements to the mean crushing force and specific energy absorption of the steel tube when filled with different densities of paper scraps. The mean crushing force and specific energy absorption of the empty tube, the paper scraps, and thin-walled tube filled with paper scraps were determined, and corresponding numerical simulations were performed. The simulation and test results showed that the impact performance of tube filled with paper scraps was greatly improved when paper scraps density was 0.35 g/cm3. By optimizing paper scraps filling structure, a new structure that could further enhance the specific energy absorption was obtained. The optimal scheme could increase the specific energy absorption of Q345 steel tube by 11.35%.


Aerospace ◽  
2021 ◽  
Vol 8 (10) ◽  
pp. 279
Author(s):  
Rongchao Jiang ◽  
Zongyang Gu ◽  
Tao Zhang ◽  
Dawei Liu ◽  
Haixia Sun ◽  
...  

Thin-walled tubes have gained wide applications in aerospace, automobile and other engineering fields due to their excellent energy absorption and lightweight properties. In this study, a novel method of entropy-weighted TOPSIS was adopted to study the energy absorption characteristics of a thin-walled circular tube under axial crushing. Three types of thin-walled circular tubes, namely, aluminum (Al) tubes, carbon-fiber-reinforced plastics (CFRP) tubes and CFRP-Al hybrid thin-walled tubes, were fabricated. Quasi-static axial crushing tests were then carried out for these specimens, and their failure modes and energy absorption performance were analyzed. The CFRP material parameters were obtained through tensile, compression and in-plane shear tests of CFRP laminates. The finite element models for the quasi-static axial crushing of these three types of circular tubes were established. The accuracy of the finite element models was verified by comparing the simulation results with the test results. On this basis, the effects of the geometric dimension and ply parameters of a CFRP-Al hybrid thin-walled circular tube on the axial crushing energy absorption characteristics were studied based on an orthogonal design and entropy-weighted TOPSIS method. The results showed that Al tube thickness, CFRP ply thickness and orientation have great effect on the energy absorption performance of a CFRP-Al hybrid thin-walled circular tube, whereas the tube diameter and length have little effect. The energy absorption capability of a CFRP-Al hybrid tube can be improved by increasing the thickness of the Al tube and the CFRP tube as well as the number of ±45° plies.


Author(s):  
Shi Hu ◽  
Huaming Tang ◽  
Shenyao Han

AbstractIn this paper, polyvinyl chloride (PVC) coarse aggregate with different mixing contents is used to solve the problems of plastic pollution, low energy absorption capacity and poor damage integrity, which provides an important reference for PVC plastic concrete used in the initial support structures of highway tunnels and coal mine roadway. At the same time, the energy absorption characteristics and their relationship under different impact loads are studied, which provides an important reference for predicting the energy absorption characteristics of concrete under other PVC aggregate content or higher impact speed. This study replaced natural coarse aggregate in concrete with different contents and equal volume of well-graded flaky PVC particles obtained by crushing PVC soft board. Also, slump, compression, and splitting strength tests, a free falling low-speed impact test of steel balls and a high-speed impact compression test of split Hopkinson pressure bar (SHPB) were carried out. Results demonstrate that the static and dynamic compressive strength decreases substantially, and the elastic modulus and slump decrease slowly with the increase of the mixing amount of PVC aggregate (0–30%). However, the energy absorption rate under low-speed impact and the specific energy absorption per MPa under high-speed impact increase obviously, indicating that the energy absorption capacity is significantly enhanced. Regardless of the mixing amount of PVC aggregate, greater strain rate can significantly enhance the dynamic compressive strength and the specific energy absorption per MPa. After the uniaxial compression test or the SHPB impact test, the relative integrity of the specimen is positively correlated with the mixing amount of PVC aggregate. In addition, the specimens are seriously damaged with the increase of the impact strain rate. When the PVC aggregate content is 20%, the compressive strength and splitting strength of concrete are 33.8 MPa and 3.26 MPa, respectively, the slump is 165 mm, the energy absorption rate under low-speed impact is 89.5%, the dynamic compressive strength under 0.65 Mpa impact air pressure is 58.77 mpa, and the specific energy absorption value per MPa is 13.33, which meets the requirements of shotcrete used in tunnel, roadway support and other impact loads. There is a linear relationship between the energy absorption characteristics under low-speed impact and high-speed impact. The greater the impact pressure, the larger the slope of the fitting straight line. The slope and intercept of the fitting line also show a good linear relationship with the increase of impact pressure. The conclusions can be used to predict the energy absorption characteristics under different PVC aggregate content or higher-speed impact pressure, which can provide important reference for safer, more economical, and environmental protection engineering structure design.


2014 ◽  
Vol 1019 ◽  
pp. 96-102
Author(s):  
Ali Taherkhani ◽  
Ali Alavi Nia

In this study, the energy absorption capacity and crush strength of cylindrical thin-walled structures is investigated using nonlinear Finite Elements code LS-DYNA. For the thin-walled structure, Aluminum A6063 is used and its behaviour is modeled using power-law equation. In order to better investigate the performance of tubes, the simulation was also carried out on structures with other types of cross-sections such as triangle, square, rectangle, and hexagonal, and their results, namely, energy absorption, crush strength, peak load, and the displacement at the end of tubes was compared to each other. It was seen that the circular cross-section has the highest energy absorption capacity and crush strength, while they are the lowest for the triangular cross-section. It was concluded that increasing the number of sides increases the energy absorption capacity and the crush strength. On the other hand, by comparing the results between the square and rectangular cross-sections, it can be found out that eliminating the symmetry of the cross-section decreases the energy absorption capacity and the crush strength. The crush behaviour of the structure was also studied by changing the mass and the velocity of the striker, simultaneously while its total kinetic energy is kept constant. It was seen that the energy absorption of the structure is more sensitive to the striker velocity than its mass.


Author(s):  
Jiaqiang Li ◽  
Yao Chen ◽  
Xiaodong Feng ◽  
Jian Feng ◽  
Pooya Sareh

Origami structures have been widely used in various engineering fields due to their desirable properties such as geometric transformability and high specific energy absorption. Based on the Kresling origami pattern, this study proposes a type of thin-walled origami tube the structural configuration of which is found by a mixed-integer linear programming model. Using finite element analysis, a reasonable configuration of a thin-walled tube with the Kresling pattern is firstly analyzed. Then, the influences of different material properties, the rotation angle of the upper and lower sections of the tube unit, and cross-sectional shapes on the energy absorption behavior of the thin-walled tubes under axial compression are evaluated. The results show that the symmetric thin-walled tube with the Kresling pattern is a reasonable choice for energy absorption purposes. Compared with thin-walled prismatic tubes, the thin-walled tube with the Kresling pattern substantially reduces the initial peak force and the average crushing force, without significantly reducing its energy absorption capacity; moreover, it enters the plastic energy dissipation stage ahead of time, giving it a superior energy absorption performance. Besides, the material properties, rotation angle, and cross-sectional shape have considerable influences on its energy absorption performance. The results provide a basis for the application of the Kresling origami pattern in the design of thin-walled energy-absorbingstructures.


2012 ◽  
Vol 229-231 ◽  
pp. 1120-1124
Author(s):  
Sajjad Dehghanpour ◽  
Sobhan Dehghanpour

Impact is one of very important subjects which always have been considered in mechanical science. Nature of impact is such that which makes its control a hard task. Therefore it is required to present the transfer of impact to other vulnerable part of a structure, when it is necessary, one of the best method of absorbing energy of impact , is by using Thin-walled tubes these tubes collapses under impact and with absorption of energy, it prevents the damage to other parts. Purpose of recent study is to survey the deformation and energy absorption of tubes with different type of cross section (rectangular or square) and with similar volumes, height, mean cross section, and material under loading. Lateral loading of tubes are quasi-static type and beside as numerical analysis, also experimental experiences has been performed to evaluate the accuracy of the results. Results from the surveys is indicates that in a same conditions which mentioned above, samples with square cross section ,absorb more energy compare to rectangular cross section, and also by increscent in thickness, energy absorption would be more.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
G. Giunta ◽  
S. Belouettar

This paper addresses a free vibration analysis of thin-walled isotropic beams via higher-order refined theories. The unknown kinematic variables are approximated along the beam cross section as aN-order polynomial expansion, whereNis a free parameter of the formulation. The governing equations are derived via the dynamic version of the Principle of Virtual Displacements and are written in a unified form in terms of a “fundamental nucleus.” This latter does not depend upon order of expansion of the theory over the cross section. Analyses are carried out through a closed form, Navier-type solution. Simply supported, slender, and short beams are investigated. Besides “classical” modes (such as bending and torsion), several higher modes are investigated. Results are assessed toward three-dimensional finite element solutions. The numerical investigation shows that the proposed Unified Formulation yields accurate results as long as the appropriate approximation order is considered. The accuracy of the solution depends upon the geometrical parameters of the beam.


Sign in / Sign up

Export Citation Format

Share Document