scholarly journals Passive single-station techniques applied for dynamic characterization of reinforced concrete buildings

Rivista Tema ◽  
2020 ◽  
Vol Vol.6 (2020) (N. 1) ◽  
Author(s):  
Davide Prati ◽  
Lorenzo Badini ◽  
Giovanni Mochi ◽  
Silvia Castellaro ◽  
Annarita Ferrante

This work aims to better understand and improve the dynamic characterization of concrete frame buildings through the combined use of finite element modeling and applied seismology. The behavior of the FEM model is compared with values obtained directly in situ through non-invasive tests based on a sensor capable of detecting the seismic microtremor and provide direct information in terms of oscillation periods and displacements. The case study structure was measured using a seismometer, and, at the same time, modeled using SAP2000. By starting from extremely different initial data, multiple variations were made to the model to produce an increase in frequency, aligning it with the one detected instrumentally.

1999 ◽  
Vol 12 (11) ◽  
pp. 1339-1346 ◽  
Author(s):  
T. Carvalho ◽  
F. Durão ◽  
C. Fernandes

Heritage ◽  
2020 ◽  
Vol 3 (3) ◽  
pp. 858-874
Author(s):  
Susanna Bracci ◽  
Donata Magrini ◽  
Rachele Manganelli del Fà ◽  
Oana Adriana Cuzman ◽  
Barbara Mazzei

The Lot Sarcophagus is one of the most relevant funerary sculptures of late antiquity (mid-4th century AC). Some of the remarkable aspects are the following (i) it is still preserved in situ; (ii) most of the carved scenes are rarities or unicum; (iii) not all the sculpture work has been completed, which allows us to analyse the executive process; (iv) many traces of polychromy have remained. This paper is focused on the characterization of the residual polychromy by using in-situ non-invasive techniques. Furthermore, few micro samples were taken, to be analysed in laboratory to study the composition of some deposits and to define if a preparatory layer was present under the coloured layer. The data showed that the very rich polychromy of the Lot Sarcophagus was made of Egyptian blue, yellow ochre, and three different types of red: two inorganics (red ochre and cinnabar), and one organic-based (madder lake). Furthermore, some decorations, completely vanished and no longer visible to the naked eye, have been rediscovered, also providing details on the construction phases. During the project, the 3D model of the sarcophagus was acquired, which afterwards was used to map the results of the diagnostic campaign.


Polymers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 440 ◽  
Author(s):  
Qi-Yuan Chen ◽  
Sheng-Ling Xiao ◽  
Sheldon Q. Shi ◽  
Li-Ping Cai

Using N,N-dimethylacetamide (DMAc) as a reducing agent in the presence of PVP-K30, the stable silver nanoparticles (Ag-NPs) solution was prepared by a convenient method for the in situ reduction of silver nitrate. The cellulose–Ag-NPs composite film (CANF) was cast in the same container using lithium chloride (LiCl) giving the Ag-NPs-PVP/DMAc solution cellulose solubility as well as γ-mercaptopropyltrimethoxysilane (MPTS) to couple Ag-NPs and cellulose. The results showed that the Ag-NPs were uniformly dispersed in solution, and the solution had strong antibacterial activities. It was found that the one-pot synthesis allowed the growth of and cross-linking with cellulose processes of Ag-NPs conducted simultaneously. Approximately 61% of Ag-NPs was successfully loaded in CANF, and Ag-NPs were uniformly dispersed in the surface and internal of the composite film. The composite film exhibited good tensile properties (tensile strength could reach up to 86.4 MPa), transparency (light transmittance exceeds 70%), thermal stability, and remarkable antibacterial activities. The sterilization effect of CANF0.04 against Staphylococcus aureus and Escherichia coli exceed 99.9%. Due to low residual LiCl/DMAc and low diffusion of Ag-NPs, the composite film may have potential for applications in food packaging and bacterial barrier.


2011 ◽  
Vol 324 ◽  
pp. 221-224 ◽  
Author(s):  
Aurore Constant ◽  
Philippe Godignon

Gate oxides for SiC lateral MOSFETs have been formed in N2O by rapid thermal processing (RTP) as an alternative to the conventional furnace process. This innovative oxidation method has not only the advantage to significantly reduce the thermal budget compared to a standard oxidation, but also to produce oxide layers with quality comparable to the one grown in a conventional furnace. Moreover, a significant improvement of the oxide quality and MOSFET performance is observed when performing in-situ a H2 anneal prior to oxidation as surface pretreatment. The channel mobility and the breakdown field of the gate oxide are considerably increased.


Author(s):  
S. Kawi ◽  
Y.P. Tang ◽  
K. Hidajat ◽  
L.E. Yu

Hydrothermal and precipitation methods have been applied to synthesize nanoscale CeO2 catalysts for selective catalytic reduction of NO with hydrocarbon under oxygen-rich condition. The former procedure has the advantage of enhancing the hydrothermal stability of nanomaterial. BET results show that their surface areas are about 30-80 m2/g. Based on TEM results, hydrothermally prepared CeO2 shows very uniform grain shaped particles with size around 10-20 nanometers. Its thermal stability up to 1200°C has been confirmed by in-situ XRD. Furthermore, deNOx reaction with propene as reducing agent in the presence of 5% oxygen has been carried out to compare catalysts prepared by the above two methods. Results show that hydrothermally prepared catalyst is more active than the one prepared by precipitation method. The latter one lost half of its activity in the presence of 5% water vapor, while the former one could stand up to 10% water vapor in the gas mixture without losing much activity.


2019 ◽  
Author(s):  
Praveen Agnihotri ◽  
Vikram Pandey ◽  
Parmanand Thakur ◽  
Maisoon Al Mansoori ◽  
Michel Rebelle ◽  
...  

Author(s):  
Yu Jin ◽  
Haitao Liao ◽  
Harry Pierson

Abstract In-situ layer-by-layer inspection is essential to achieving the full capability and advantages of additive manufacturing in producing complex geometries. The shape of each inspected layer can be described by a 2D point cloud obtained by slicing a thin layer of 3D point cloud acquired from 3D scanning. In practice, a scanned shape must be aligned with the corresponding base-truth CAD model before evaluating its geometric accuracy. Indeed, the observed geometric error is attributed to systematic, random, and alignment errors, where the systematic error is the one that triggers an alarm of system anomalies. In this work, a quickest change detection (QCD) algorithm is applied under a multi-resolution alignment and inspection framework 1) to differentiate errors from different error sources, and 2) to identify the layer where the earliest systematic deviation distribution changes during the printing process. Numerical experiments and a case study on a human heart are conducted to illustrate the performance of the proposed method in detecting layer-wise geometric error.


Sign in / Sign up

Export Citation Format

Share Document